# OCR Translate v0.2 import os os.system("sudo apt-get install xclip") import gradio as gr import nltk import pyclip import pytesseract from nltk.tokenize import sent_tokenize from transformers import MarianMTModel, MarianTokenizer # Newly added below from fastapi import FastAPI, File, UploadFile, Body, Depends, HTTPException from fastapi.security.api_key import APIKeyHeader from fastapi.encoders import jsonable_encoder API_KEY = os.environ.get("API_KEY") app = FastAPI() api_key_header = APIKeyHeader(name="api_key", auto_error=False) def get_api_key(api_key: Optional[str] = Depends(api_key_header)): if api_key is None or api_key != API_KEY: raise HTTPException(status_code=401, detail="Unauthorized access") return api_key @app.post("/ocr", response_model=dict) async def ocr( api_key: str = Depends(get_api_key), image: UploadFile = File(...), languages: list = Body(["eng"]) ): # if api_key != API_KEY: # return {"error": "Invalid API key"}, 401 try: text = image_to_string(await image.read(), lang="+".join(languages)) except Exception as e: return {"error": str(e)}, 500 return jsonable_encoder({"text": text}) @app.post("/translate", response_model=dict) async def translate( api_key: str = Depends(get_api_key), text: str = Body(...), src: str = "en", trg: str = "zh", ): # if api_key != API_KEY: # return {"error": "Invalid API key"}, 401 tokenizer, model = get_model(src, trg) translated_text = "" for sentence in sent_tokenize(text): translated_sub = model.generate(**tokenizer(sentence, return_tensors="pt"))[0] translated_text += tokenizer.decode(translated_sub, skip_special_tokens=True) + "\n" return jsonable_encoder({"translated_text": translated_text}) def get_model(src: str, trg: str): model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) return tokenizer, model # =============================================== nltk.download('punkt') OCR_TR_DESCRIPTION = '''# OCR Translate v0.2
OCR translation system based on Tesseract
''' # Image path img_dir = "./data" # Get tesseract language list choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] # Translation model selection def model_choice(src="en", trg="zh"): # https://huggingface.co/Helsinki-NLP/opus-mt-zh-en # https://huggingface.co/Helsinki-NLP/opus-mt-en-zh model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # Model name tokenizer = MarianTokenizer.from_pretrained(model_name) # tokenizer model = MarianMTModel.from_pretrained(model_name) # Model return tokenizer, model # Convert tesseract language list to pytesseract language def ocr_lang(lang_list): lang_str = "" lang_len = len(lang_list) if lang_len == 1: return lang_list[0] else: for i in range(lang_len): lang_list.insert(lang_len - i, "+") lang_str = "".join(lang_list[:-1]) return lang_str # ocr tesseract def ocr_tesseract(img, languages): ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages)) return ocr_str # Clear def clear_content(): return None # copy to clipboard def cp_text(input_text): # sudo apt-get install xclip try: pyclip.copy(input_text) except Exception as e: print("sudo apt-get install xclip") print(e) # clear clipboard def cp_clear(): pyclip.clear() # translate def translate(input_text, inputs_transStyle): # reference:https://huggingface.co/docs/transformers/model_doc/marian if input_text is None or input_text == "": return "System prompt: There is no content to translate!" # Select translation model trans_src, trans_trg = inputs_transStyle.split("-")[0], inputs_transStyle.split("-")[1] tokenizer, model = model_choice(trans_src, trans_trg) translate_text = "" input_text_list = input_text.split("\n\n") translate_text_list_tmp = [] for i in range(len(input_text_list)): if input_text_list[i] != "": translate_text_list_tmp.append(input_text_list[i]) for i in range(len(translate_text_list_tmp)): translated_sub = model.generate( **tokenizer(sent_tokenize(translate_text_list_tmp[i]), return_tensors="pt", truncation=True, padding=True)) tgt_text_sub = [tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub] translate_text_sub = "".join(tgt_text_sub) translate_text = translate_text + "\n\n" + translate_text_sub return translate_text[2:] def main(): with gr.Blocks(css='style.css') as ocr_tr: gr.Markdown(OCR_TR_DESCRIPTION) # -------------- OCR text extraction -------------- with gr.Box(): with gr.Row(): gr.Markdown("### Step 01: Text Extraction") with gr.Row(): with gr.Column(): with gr.Row(): inputs_img = gr.Image(image_mode="RGB", source="upload", type="pil", label="image") with gr.Row(): inputs_lang = gr.CheckboxGroup(choices=["chi_sim", "eng"], type="value", value=['eng'], label='language') with gr.Row(): clear_img_btn = gr.Button('Clear') ocr_btn = gr.Button(value='OCR Extraction', variant="primary") with gr.Column(): with gr.Row(): outputs_text = gr.Textbox(label="Extract content", lines=20) with gr.Row(): inputs_transStyle = gr.Radio(choices=["zh-en", "en-zh"], type="value", value="zh-en", label='translation mode') with gr.Row(): clear_text_btn = gr.Button('Clear') translate_btn = gr.Button(value='Translate', variant="primary") with gr.Row(): example_list = [["./data/test.png", ["eng"]], ["./data/test02.png", ["eng"]], ["./data/test03.png", ["chi_sim"]]] gr.Examples(example_list, [inputs_img, inputs_lang], outputs_text, ocr_tesseract, cache_examples=False) # -------------- translate -------------- with gr.Box(): with gr.Row(): gr.Markdown("### Step 02: Translation") with gr.Row(): outputs_tr_text = gr.Textbox(label="Translate Content", lines=20) with gr.Row(): cp_clear_btn = gr.Button(value='Clear Clipboard') cp_btn = gr.Button(value='Copy to clipboard', variant="primary") # ---------------------- OCR Tesseract ---------------------- ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[ outputs_text,]) clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img]) # ---------------------- translate ---------------------- translate_btn.click(fn=translate, inputs=[outputs_text, inputs_transStyle], outputs=[outputs_tr_text]) clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text]) # ---------------------- copy to clipboard ---------------------- cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[]) cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[]) ocr_tr.launch(inbrowser=True) if __name__ == '__main__': main()