File size: 3,880 Bytes
7dd0ab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b95899
7dd0ab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff49c2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from transformers import AutoModel, AutoTokenizer, Qwen2VLForConditionalGeneration, AutoProcessor
import streamlit as st
import os
from PIL import Image
import torch
import re

@st.cache_resource
def init_model():
    tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
    model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
    model = model.eval()
    return model, tokenizer

# def init_gpu_model():
#     tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
#     model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
#     model = model.eval().cuda()
#     return model, tokenizer

def init_qwen_model():
    model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", device_map="cpu", torch_dtype=torch.float16)
    processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
    return model, processor

def get_quen_op(image_file, model, processor):
    try: 
        image = Image.open(image_file).convert('RGB')
        conversation = [
            {
                "role":"user",
                "content":[
                    {
                        "type":"image",
                    },
                    {
                        "type":"text",
                        "text":"Extract text from this image."
                    }
                ]
            }
        ]
        text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
        inputs = processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt")
        inputs = {k: v.to(torch.float32) if torch.is_floating_point(v) else v for k, v in inputs.items()}

        generation_config = {
            "max_new_tokens": 32,
            "do_sample": False,
            "top_k": 20,
            "top_p": 0.90,
            "temperature": 0.4,
            "num_return_sequences": 1,
            "pad_token_id": processor.tokenizer.pad_token_id,
            "eos_token_id": processor.tokenizer.eos_token_id,
        }

        output_ids = model.generate(**inputs, **generation_config)
        if 'input_ids' in inputs:
                generated_ids = output_ids[:, inputs['input_ids'].shape[1]:]
        else:
            generated_ids = output_ids
            
        output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
            
        return output_text[:] if output_text else "No text extracted from the image."
    
    except Exception as e:
        return f"An error occurred: {str(e)}"

@st.cache_data
def get_text(image_file, _model, _tokenizer):
    res = _model.chat(_tokenizer, image_file, ocr_type='ocr')
    return res

def highlight_text(text, search_term):
    if not search_term:
        return text
    pattern = re.compile(re.escape(search_term), re.IGNORECASE)
    return pattern.sub(lambda m: f'<span style="background-color: green;">{m.group()}</span>', text)

st.title("Image To Text")
st.write("Upload an image")

MODEL, PROCESSOR = init_model()

image_file = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg'])

if image_file:
    if not os.path.exists("images"):
        os.makedirs("images")
    with open(f"images/{image_file.name}", "wb") as f:
        f.write(image_file.getbuffer())

    image_file = f"images/{image_file.name}"

    text = get_text(image_file, MODEL, PROCESSOR)

    print(text)
    
    # Add search functionality
    search_term = st.text_input("Enter a word or phrase to search:")
    highlighted_text = highlight_text(text, search_term)
    
    st.markdown(highlighted_text, unsafe_allow_html=True)