Spaces:
Runtime error
Runtime error
import gradio as gr | |
from upstash_vector import AsyncIndex | |
from transformers import AutoFeatureExtractor, AutoModel | |
from datasets import load_dataset | |
index = AsyncIndex.from_env() | |
model_ckpt = "google/vit-base-patch16-224-in21k" | |
extractor = AutoFeatureExtractor.from_pretrained(model_ckpt) | |
model = AutoModel.from_pretrained(model_ckpt) | |
hidden_dim = model.config.hidden_size | |
dataset = load_dataset("BounharAbdelaziz/Face-Aging-Dataset") | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# Find Your Twins | |
Upload your face and find the most similar people from [Face Aging Dataset](https://huggingface.co/datasets/BounharAbdelaziz/Face-Aging-Dataset) using Google's [VIT](https://huggingface.co/google/vit-base-patch16-224-in21k) model. The task of finding most similar vectors is powered by [Upstash Vector](https://upstash.com) 🚀. Check our blog post *here*. | |
""" | |
) | |
with gr.Tab("Basic"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
input_image = gr.Image(type="pil") | |
with gr.Column(scale=3): | |
output_image = gr.Gallery(height=800) | |
async def find_similar_faces(image): | |
if image is None: | |
return None | |
inputs = extractor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
embed = outputs.last_hidden_state[0][0] | |
result = await index.query(vector=embed.tolist(), top_k=4) | |
return [dataset["train"][int(vector.id)]["image"] for vector in result] | |
gr.Examples( | |
examples=[dataset["train"][6]["image"]], | |
inputs=input_image, | |
outputs=output_image, | |
fn=find_similar_faces, | |
cache_examples=False, | |
) | |
with gr.Tab("Advanced"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
adv_input_image = gr.Image(type="pil") | |
adv_image_count = gr.Number(9, label="Image Count") | |
with gr.Column(scale=3): | |
adv_output_image = gr.Gallery(height=1000) | |
async def find_similar_faces(image, count): | |
inputs = extractor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
embed = outputs.last_hidden_state[0][0] | |
result = await index.query( | |
vector=embed.tolist(), top_k=max(1, min(19, count)) | |
) | |
return [dataset["train"][int(vector.id)]["image"] for vector in result] | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |