File size: 9,366 Bytes
de34da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import cv2
from sklearn.decomposition import PCA
from torchvision import transforms
import matplotlib.pyplot as plt
import torch

import os


def display_attention_maps(
    attention_maps,
    is_cross,
    num_heads,
    tokenizer,
    prompts,
    dir_name,
    step,
    layer,
    resolution,
    is_query=False,
    is_key=False,
    points=None,
    image_path=None,
):
    attention_maps = attention_maps.reshape(-1, num_heads, attention_maps.size(-2), attention_maps.size(-1))
    num_samples = len(attention_maps) // 2
    attention_type = 'cross' if is_cross else 'self'
    for i, attention_map in enumerate(attention_maps):
        if is_query:
            attention_type = f'{attention_type}_queries'
        elif is_key:
            attention_type = f'{attention_type}_keys'

        cond = 'uncond' if i < num_samples else 'cond'
        i = i % num_samples
        cur_dir_name = f'{dir_name}/{resolution}/{attention_type}/{layer}/{cond}/{i}'
        os.makedirs(cur_dir_name, exist_ok=True)

        if is_cross and not is_query:
            fig = show_cross_attention(attention_map, tokenizer, prompts[i % num_samples])
        else:
            fig = show_self_attention(attention_map)
            if points is not None:
                point_dir_name = f'{cur_dir_name}/points'
                os.makedirs(point_dir_name, exist_ok=True)
                for j, point in enumerate(points):
                    specific_point_dir_name = f'{point_dir_name}/{j}'
                    os.makedirs(specific_point_dir_name, exist_ok=True)
                    point_path = f'{specific_point_dir_name}/{step}.png'
                    point_fig = show_individual_self_attention(attention_map, point, image_path=image_path)
                    point_fig.save(point_path)
                    point_fig.close()

        fig.save(f'{cur_dir_name}/{step}.png')
        fig.close()


def text_under_image(image: np.ndarray, text: str, text_color: tuple[int, int, int] = (0, 0, 0)):
    h, w, c = image.shape
    offset = int(h * .2)
    font = cv2.FONT_HERSHEY_SIMPLEX
    # font = ImageFont.truetype("/usr/share/fonts/truetype/noto/NotoMono-Regular.ttf", font_size)
    text_size = cv2.getTextSize(text, font, 1, 2)[0]
    lines = text.splitlines()
    img = np.ones((h + offset + (text_size[1] + 2) * len(lines) - 2, w, c), dtype=np.uint8) * 255
    img[:h, :w] = image

    for i, line in enumerate(lines):
        text_size = cv2.getTextSize(line, font, 1, 2)[0]
        text_x, text_y = ((w - text_size[0]) // 2, h + offset + i * (text_size[1] + 2))
        cv2.putText(img, line, (text_x, text_y), font, 1, text_color, 2)

    return img

def view_images(images, num_rows=1, offset_ratio=0.02):
    if type(images) is list:
        num_empty = len(images) % num_rows
    elif images.ndim == 4:
        num_empty = images.shape[0] % num_rows
    else:
        images = [images]
        num_empty = 0

    empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
    images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
    num_items = len(images)

    h, w, c = images[0].shape
    offset = int(h * offset_ratio)
    num_cols = num_items // num_rows
    image_ = np.ones((h * num_rows + offset * (num_rows - 1),
                      w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
    for i in range(num_rows):
        for j in range(num_cols):
            image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
                i * num_cols + j]

    return Image.fromarray(image_)


def show_cross_attention(attention_maps, tokenizer, prompt, k_norms=None, v_norms=None):
    attention_maps = attention_maps.mean(dim=0)
    res = int(attention_maps.size(-2) ** 0.5)
    attention_maps = attention_maps.reshape(res, res, -1)
    tokens = tokenizer.encode(prompt)
    decoder = tokenizer.decode
    if k_norms is not None:
        k_norms = k_norms.round(decimals=1)
    if v_norms is not None:
        v_norms = v_norms.round(decimals=1)
    images = []
    for i in range(len(tokens) + 5):
        image = attention_maps[:, :, i]
        image = 255 * image / image.max()
        image = image.unsqueeze(-1).expand(*image.shape, 3)
        image = image.detach().cpu().numpy().astype(np.uint8)
        image = np.array(Image.fromarray(image).resize((256, 256)))
        token = tokens[i] if i < len(tokens) else tokens[-1]
        text = decoder(int(token))
        if k_norms is not None and v_norms is not None:
            text += f'\n{k_norms[i]}\n{v_norms[i]})'
        image = text_under_image(image, text)
        images.append(image)
    return view_images(np.stack(images, axis=0))


def show_queries_keys(queries, keys, colors, labels):  # [h ni d]
    num_queries = [query.size(1) for query in queries]
    num_keys = [key.size(1) for key in keys]
    h, _, d = queries[0].shape

    data = torch.cat((*queries, *keys), dim=1)  # h n d
    data = data.permute(1, 0, 2)  # n h d
    data = data.reshape(-1, h * d).detach().cpu().numpy()
    pca = PCA(n_components=2)
    data = pca.fit_transform(data)  # n 2

    query_indices = np.array(num_queries).cumsum()
    total_num_queries = query_indices[-1]
    queries = np.split(data[:total_num_queries], query_indices[:-1])
    if len(num_keys) == 0:
        keys = [None, ] * len(labels)
    else:
        key_indices = np.array(num_keys).cumsum()
        keys = np.split(data[total_num_queries:], key_indices[:-1])

    fig, ax = plt.subplots()
    marker_size = plt.rcParams['lines.markersize'] ** 2
    query_size = int(1.25 * marker_size)
    key_size = int(2 * marker_size)
    for query, key, color, label in zip(queries, keys, colors, labels):
        print(f'# queries of {label}', query.shape[0])
        ax.scatter(query[:, 0], query[:, 1], s=query_size, color=color, marker='o', label=f'"{label}" queries')

        if key is None:
            continue

        print(f'# keys of {label}', key.shape[0])
        keys_label = f'"{label}" key'
        if key.shape[0] > 1:
            keys_label += 's'
        ax.scatter(key[:, 0], key[:, 1], s=key_size, color=color, marker='x', label=keys_label)

    ax.set_axis_off()
    #ax.set_xlabel('X-axis')
    #ax.set_ylabel('Y-axis')
    #ax.set_title('Scatter Plot with Circles and Crosses')

    #ax.legend()
    return fig


def show_self_attention(attention_maps):  # h n m
    attention_maps = attention_maps.transpose(0, 1).flatten(start_dim=1).detach().cpu().numpy()
    pca = PCA(n_components=3)
    pca_img = pca.fit_transform(attention_maps)  # N X 3
    h = w = int(pca_img.shape[0] ** 0.5)
    pca_img = pca_img.reshape(h, w, 3)
    pca_img_min = pca_img.min(axis=(0, 1))
    pca_img_max = pca_img.max(axis=(0, 1))
    pca_img = (pca_img - pca_img_min) / (pca_img_max - pca_img_min)
    pca_img = Image.fromarray((pca_img * 255).astype(np.uint8))
    pca_img = transforms.Resize(256, interpolation=transforms.InterpolationMode.NEAREST)(pca_img)
    return pca_img


def draw_box(pil_img, bboxes, colors=None, width=5):
    draw = ImageDraw.Draw(pil_img)
    #font = ImageFont.truetype('./FreeMono.ttf', 25)
    w, h = pil_img.size
    colors = ['red'] * len(bboxes) if colors is None else colors
    for obj_bbox, color in zip(bboxes, colors):
        x_0, y_0, x_1, y_1 = obj_bbox[0], obj_bbox[1], obj_bbox[2], obj_bbox[3]
        draw.rectangle([int(x_0 * w), int(y_0 * h), int(x_1 * w), int(y_1 * h)], outline=color, width=width)
    return pil_img


def show_individual_self_attention(attn, point, image_path=None):
    resolution = int(attn.size(-1) ** 0.5)
    attn = attn.mean(dim=0).reshape(resolution, resolution, resolution, resolution)
    attn = attn[round(point[1] * resolution), round(point[0] * resolution)]
    attn = (attn - attn.min()) / (attn.max() - attn.min())
    image = None if image_path is None else Image.open(image_path).convert('RGB')
    image = show_image_relevance(attn, image=image)
    return Image.fromarray(image)


def show_image_relevance(image_relevance, image: Image.Image = None, relevnace_res=16):
    # create heatmap from mask on image
    def show_cam_on_image(img, mask):
        img = img.resize((relevnace_res ** 2, relevnace_res ** 2))
        img = np.array(img)
        img = (img - img.min()) / (img.max() - img.min())
        heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
        heatmap = np.float32(heatmap) / 255
        cam = heatmap + np.float32(img)
        cam = cam / np.max(cam)
        return cam

    image_relevance = image_relevance.reshape(1, 1, image_relevance.shape[-1], image_relevance.shape[-1])
    image_relevance = image_relevance.cuda() # because float16 precision interpolation is not supported on cpu
    image_relevance = torch.nn.functional.interpolate(image_relevance, size=relevnace_res ** 2, mode='bilinear')
    image_relevance = image_relevance.cpu() # send it back to cpu
    image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min())
    image_relevance = image_relevance.reshape(relevnace_res ** 2, relevnace_res ** 2)
    vis = image_relevance if image is None else show_cam_on_image(image, image_relevance)
    vis = np.uint8(255 * vis)
    vis = cv2.cvtColor(np.array(vis), cv2.COLOR_RGB2BGR)
    return vis