Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,366 Bytes
de34da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import cv2
from sklearn.decomposition import PCA
from torchvision import transforms
import matplotlib.pyplot as plt
import torch
import os
def display_attention_maps(
attention_maps,
is_cross,
num_heads,
tokenizer,
prompts,
dir_name,
step,
layer,
resolution,
is_query=False,
is_key=False,
points=None,
image_path=None,
):
attention_maps = attention_maps.reshape(-1, num_heads, attention_maps.size(-2), attention_maps.size(-1))
num_samples = len(attention_maps) // 2
attention_type = 'cross' if is_cross else 'self'
for i, attention_map in enumerate(attention_maps):
if is_query:
attention_type = f'{attention_type}_queries'
elif is_key:
attention_type = f'{attention_type}_keys'
cond = 'uncond' if i < num_samples else 'cond'
i = i % num_samples
cur_dir_name = f'{dir_name}/{resolution}/{attention_type}/{layer}/{cond}/{i}'
os.makedirs(cur_dir_name, exist_ok=True)
if is_cross and not is_query:
fig = show_cross_attention(attention_map, tokenizer, prompts[i % num_samples])
else:
fig = show_self_attention(attention_map)
if points is not None:
point_dir_name = f'{cur_dir_name}/points'
os.makedirs(point_dir_name, exist_ok=True)
for j, point in enumerate(points):
specific_point_dir_name = f'{point_dir_name}/{j}'
os.makedirs(specific_point_dir_name, exist_ok=True)
point_path = f'{specific_point_dir_name}/{step}.png'
point_fig = show_individual_self_attention(attention_map, point, image_path=image_path)
point_fig.save(point_path)
point_fig.close()
fig.save(f'{cur_dir_name}/{step}.png')
fig.close()
def text_under_image(image: np.ndarray, text: str, text_color: tuple[int, int, int] = (0, 0, 0)):
h, w, c = image.shape
offset = int(h * .2)
font = cv2.FONT_HERSHEY_SIMPLEX
# font = ImageFont.truetype("/usr/share/fonts/truetype/noto/NotoMono-Regular.ttf", font_size)
text_size = cv2.getTextSize(text, font, 1, 2)[0]
lines = text.splitlines()
img = np.ones((h + offset + (text_size[1] + 2) * len(lines) - 2, w, c), dtype=np.uint8) * 255
img[:h, :w] = image
for i, line in enumerate(lines):
text_size = cv2.getTextSize(line, font, 1, 2)[0]
text_x, text_y = ((w - text_size[0]) // 2, h + offset + i * (text_size[1] + 2))
cv2.putText(img, line, (text_x, text_y), font, 1, text_color, 2)
return img
def view_images(images, num_rows=1, offset_ratio=0.02):
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
i * num_cols + j]
return Image.fromarray(image_)
def show_cross_attention(attention_maps, tokenizer, prompt, k_norms=None, v_norms=None):
attention_maps = attention_maps.mean(dim=0)
res = int(attention_maps.size(-2) ** 0.5)
attention_maps = attention_maps.reshape(res, res, -1)
tokens = tokenizer.encode(prompt)
decoder = tokenizer.decode
if k_norms is not None:
k_norms = k_norms.round(decimals=1)
if v_norms is not None:
v_norms = v_norms.round(decimals=1)
images = []
for i in range(len(tokens) + 5):
image = attention_maps[:, :, i]
image = 255 * image / image.max()
image = image.unsqueeze(-1).expand(*image.shape, 3)
image = image.detach().cpu().numpy().astype(np.uint8)
image = np.array(Image.fromarray(image).resize((256, 256)))
token = tokens[i] if i < len(tokens) else tokens[-1]
text = decoder(int(token))
if k_norms is not None and v_norms is not None:
text += f'\n{k_norms[i]}\n{v_norms[i]})'
image = text_under_image(image, text)
images.append(image)
return view_images(np.stack(images, axis=0))
def show_queries_keys(queries, keys, colors, labels): # [h ni d]
num_queries = [query.size(1) for query in queries]
num_keys = [key.size(1) for key in keys]
h, _, d = queries[0].shape
data = torch.cat((*queries, *keys), dim=1) # h n d
data = data.permute(1, 0, 2) # n h d
data = data.reshape(-1, h * d).detach().cpu().numpy()
pca = PCA(n_components=2)
data = pca.fit_transform(data) # n 2
query_indices = np.array(num_queries).cumsum()
total_num_queries = query_indices[-1]
queries = np.split(data[:total_num_queries], query_indices[:-1])
if len(num_keys) == 0:
keys = [None, ] * len(labels)
else:
key_indices = np.array(num_keys).cumsum()
keys = np.split(data[total_num_queries:], key_indices[:-1])
fig, ax = plt.subplots()
marker_size = plt.rcParams['lines.markersize'] ** 2
query_size = int(1.25 * marker_size)
key_size = int(2 * marker_size)
for query, key, color, label in zip(queries, keys, colors, labels):
print(f'# queries of {label}', query.shape[0])
ax.scatter(query[:, 0], query[:, 1], s=query_size, color=color, marker='o', label=f'"{label}" queries')
if key is None:
continue
print(f'# keys of {label}', key.shape[0])
keys_label = f'"{label}" key'
if key.shape[0] > 1:
keys_label += 's'
ax.scatter(key[:, 0], key[:, 1], s=key_size, color=color, marker='x', label=keys_label)
ax.set_axis_off()
#ax.set_xlabel('X-axis')
#ax.set_ylabel('Y-axis')
#ax.set_title('Scatter Plot with Circles and Crosses')
#ax.legend()
return fig
def show_self_attention(attention_maps): # h n m
attention_maps = attention_maps.transpose(0, 1).flatten(start_dim=1).detach().cpu().numpy()
pca = PCA(n_components=3)
pca_img = pca.fit_transform(attention_maps) # N X 3
h = w = int(pca_img.shape[0] ** 0.5)
pca_img = pca_img.reshape(h, w, 3)
pca_img_min = pca_img.min(axis=(0, 1))
pca_img_max = pca_img.max(axis=(0, 1))
pca_img = (pca_img - pca_img_min) / (pca_img_max - pca_img_min)
pca_img = Image.fromarray((pca_img * 255).astype(np.uint8))
pca_img = transforms.Resize(256, interpolation=transforms.InterpolationMode.NEAREST)(pca_img)
return pca_img
def draw_box(pil_img, bboxes, colors=None, width=5):
draw = ImageDraw.Draw(pil_img)
#font = ImageFont.truetype('./FreeMono.ttf', 25)
w, h = pil_img.size
colors = ['red'] * len(bboxes) if colors is None else colors
for obj_bbox, color in zip(bboxes, colors):
x_0, y_0, x_1, y_1 = obj_bbox[0], obj_bbox[1], obj_bbox[2], obj_bbox[3]
draw.rectangle([int(x_0 * w), int(y_0 * h), int(x_1 * w), int(y_1 * h)], outline=color, width=width)
return pil_img
def show_individual_self_attention(attn, point, image_path=None):
resolution = int(attn.size(-1) ** 0.5)
attn = attn.mean(dim=0).reshape(resolution, resolution, resolution, resolution)
attn = attn[round(point[1] * resolution), round(point[0] * resolution)]
attn = (attn - attn.min()) / (attn.max() - attn.min())
image = None if image_path is None else Image.open(image_path).convert('RGB')
image = show_image_relevance(attn, image=image)
return Image.fromarray(image)
def show_image_relevance(image_relevance, image: Image.Image = None, relevnace_res=16):
# create heatmap from mask on image
def show_cam_on_image(img, mask):
img = img.resize((relevnace_res ** 2, relevnace_res ** 2))
img = np.array(img)
img = (img - img.min()) / (img.max() - img.min())
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
cam = heatmap + np.float32(img)
cam = cam / np.max(cam)
return cam
image_relevance = image_relevance.reshape(1, 1, image_relevance.shape[-1], image_relevance.shape[-1])
image_relevance = image_relevance.cuda() # because float16 precision interpolation is not supported on cpu
image_relevance = torch.nn.functional.interpolate(image_relevance, size=relevnace_res ** 2, mode='bilinear')
image_relevance = image_relevance.cpu() # send it back to cpu
image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min())
image_relevance = image_relevance.reshape(relevnace_res ** 2, relevnace_res ** 2)
vis = image_relevance if image is None else show_cam_on_image(image, image_relevance)
vis = np.uint8(255 * vis)
vis = cv2.cvtColor(np.array(vis), cv2.COLOR_RGB2BGR)
return vis
|