Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,515 Bytes
de34da3 056b358 de34da3 056b358 de34da3 056b358 de34da3 8fea73b 056b358 de34da3 78b6f81 de34da3 056b358 de34da3 78b6f81 de34da3 78b6f81 de34da3 78b6f81 de34da3 056b358 de34da3 78b6f81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Union, Tuple, List, Callable, Dict
from torchvision.utils import save_image
from einops import rearrange, repeat
class AttentionBase:
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
def before_step(self):
pass
def after_step(self):
pass
def __call__(self, q, k, v, is_cross, place_in_unet, num_heads, **kwargs):
if self.cur_att_layer == 0:
self.before_step()
out = self.forward(q, k, v, is_cross, place_in_unet, num_heads, **kwargs)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.after_step()
return out
def forward(self, q, k, v, is_cross, place_in_unet, num_heads, **kwargs):
batch_size = q.size(0) // num_heads
n = q.size(1)
d = k.size(1)
q = q.reshape(batch_size, num_heads, n, -1)
k = k.reshape(batch_size, num_heads, d, -1)
v = v.reshape(batch_size, num_heads, d, -1)
out = F.scaled_dot_product_attention(q, k, v, attn_mask=kwargs['mask'])
out = out.reshape(batch_size * num_heads, n, -1)
out = rearrange(out, '(b h) n d -> b n (h d)', h=num_heads)
return out
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def register_attention_editor_diffusers(model, editor: AttentionBase):
"""
Register a attention editor to Diffuser Pipeline, refer from [Prompt-to-Prompt]
"""
def ca_forward(self, place_in_unet):
def forward(x, encoder_hidden_states=None, attention_mask=None, context=None, mask=None):
"""
The attention is similar to the original implementation of LDM CrossAttention class
except adding some modifications on the attention
"""
if encoder_hidden_states is not None:
context = encoder_hidden_states
if attention_mask is not None:
mask = attention_mask
to_out = self.to_out
if isinstance(to_out, nn.modules.container.ModuleList):
to_out = self.to_out[0]
else:
to_out = self.to_out
h = self.heads
q = self.to_q(x)
is_cross = context is not None
context = context if is_cross else x
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
out = editor(
q, k, v, is_cross, place_in_unet,
self.heads, scale=self.scale, mask=mask)
return to_out(out)
return forward
def register_editor(net, count, place_in_unet):
for name, subnet in net.named_children():
if net.__class__.__name__ == 'Attention': # spatial Transformer layer
net.original_forward = net.forward
net.forward = ca_forward(net, place_in_unet)
return count + 1
elif hasattr(net, 'children'):
count = register_editor(subnet, count, place_in_unet)
return count
cross_att_count = 0
for net_name, net in model.unet.named_children():
if "down" in net_name:
cross_att_count += register_editor(net, 0, "down")
elif "mid" in net_name:
cross_att_count += register_editor(net, 0, "mid")
elif "up" in net_name:
cross_att_count += register_editor(net, 0, "up")
editor.num_att_layers = cross_att_count
editor.model = model
model.editor = editor
def unregister_attention_editor_diffusers(model):
def unregister_editor(net):
for name, subnet in net.named_children():
if net.__class__.__name__ == 'Attention': # spatial Transformer layer
net.forward = net.original_forward
net.original_forward = None
elif hasattr(net, 'children'):
unregister_editor(subnet)
for net_name, net in model.unet.named_children():
if "down" in net_name:
unregister_editor(net)
elif "mid" in net_name:
unregister_editor(net)
elif "up" in net_name:
unregister_editor(net)
editor.model = None
model.editor = None
|