Spaces:
Runtime error
Runtime error
File size: 14,534 Bytes
de34da3 a47cf5c de34da3 a47cf5c de34da3 a47cf5c de34da3 a47cf5c de34da3 a47cf5c de34da3 a47cf5c de34da3 a47cf5c de34da3 a47cf5c de34da3 a47cf5c de34da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
from diffusers import DDIMScheduler
from pipeline_stable_diffusion_xl_opt import StableDiffusionXLPipeline
from injection_utils import regiter_attention_editor_diffusers
from bounded_attention import BoundedAttention
from pytorch_lightning import seed_everything
import gradio as gr
import torch
import numpy as np
from PIL import Image, ImageDraw
from functools import partial
RESOLUTION = 512
MIN_SIZE = 0.01
WHITE = 255
COLORS = ["red", "blue", "green", "orange", "purple", "turquoise", "olive"]
def inference(
device,
model,
boxes,
prompts,
subject_token_indices,
filter_token_indices,
num_tokens,
init_step_size,
final_step_size,
num_clusters_per_subject,
cross_loss_scale,
self_loss_scale,
classifier_free_guidance_scale,
num_iterations,
loss_threshold,
num_guidance_steps,
seed,
):
seed_everything(seed)
start_code = torch.randn([len(prompts), 4, 128, 128], device=device)
editor = BoundedAttention(
boxes,
prompts,
subject_token_indices,
list(range(70, 82)),
list(range(70, 82)),
eos_token_index=num_tokens + 1,
cross_loss_coef=cross_loss_scale,
self_loss_coef=self_loss_scale,
filter_token_indices=filter_token_indices,
max_guidance_iter=num_guidance_steps,
max_guidance_iter_per_step=num_iterations,
start_step_size=init_step_size,
end_step_size=final_step_size,
loss_stopping_value=loss_threshold,
num_clusters_per_box=num_clusters_per_subject,
debug=False,
)
regiter_attention_editor_diffusers(model, editor)
return model(prompts, latents=start_code, guidance_scale=classifier_free_guidance_scale).images
def generate(
device,
model,
prompt,
subject_token_indices,
filter_token_indices,
num_tokens,
init_step_size,
final_step_size,
num_clusters_per_subject,
cross_loss_scale,
self_loss_scale,
classifier_free_guidance_scale,
batch_size,
num_iterations,
loss_threshold,
num_guidance_steps,
seed,
boxes
):
subject_token_indices = convert_token_indices(subject_token_indices, nested=True)
if len(boxes) != len(subject_token_indices):
raise ValueError("""
The number of boxes should be equal to the number of subject token indices.
Number of boxes drawn: {}, number of grounding tokens: {}.
""".format(len(boxes), len(subject_token_indices)))
filter_token_indices = convert_token_indices(filter_token_indices) if len(filter_token_indices.strip()) > 0 else None
num_tokens = int(num_tokens) if len(num_tokens.strip()) > 0 else None
prompts = [prompt.strip('.').strip(',').strip()] * batch_size
images = inference(
device, model, boxes, prompts, subject_token_indices, filter_token_indices, num_tokens, init_step_size,
final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale, classifier_free_guidance_scale,
num_iterations, loss_threshold, num_guidance_steps, seed)
blank_samples = batch_size % 2 if batch_size > 1 else 0
images = [gr.Image.update(value=x, visible=True) for i, x in enumerate(images)] \
+ [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
+ [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
return images
def convert_token_indices(token_indices, nested=False):
if nested:
return [convert_token_indices(indices, nested=False) for indices in token_indices.split(';')]
return [int(index.strip()) for index in token_indices.split(',') if len(index.strip()) > 0]
def draw(boxes, mask, layout_image):
if mask.ndim == 3:
mask = WHITE - mask[..., 0]
mask = (mask != 0).astype('uint8') * WHITE
if mask.sum() > 0:
x1x2 = np.where(mask.max(0) != 0)[0] / RESOLUTION
y1y2 = np.where(mask.max(1) != 0)[0] / RESOLUTION
y1, y2 = y1y2.min(), y1y2.max()
x1, x2 = x1x2.min(), x1x2.max()
if (x2 - x1 > MIN_SIZE) and (y2 - y1 > MIN_SIZE):
boxes.append((x1, y1, x2, y2))
layout_image = draw_boxes(boxes)
return [boxes, None, layout_image]
def draw_boxes(boxes):
if len(boxes) == 0:
return None
boxes = np.array(boxes) * RESOLUTION
image = Image.new('RGB', (RESOLUTION, RESOLUTION), (WHITE, WHITE, WHITE))
drawing = ImageDraw.Draw(image)
for i, box in enumerate(boxes.astype(int).tolist()):
drawing.rectangle(box, outline=COLORS[i % len(COLORS)], width=4)
return image
def clear(batch_size):
blank_samples = batch_size % 2 if batch_size > 1 else 0
out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)]
return [[], None, None] + out_images
def main():
css = """
#paper-info a {
color:#008AD7;
text-decoration: none;
}
#paper-info a:hover {
cursor: pointer;
text-decoration: none;
}
.tooltip {
color: #555;
position: relative;
display: inline-block;
cursor: pointer;
}
.tooltip .tooltiptext {
visibility: hidden;
width: 400px;
background-color: #555;
color: #fff;
text-align: center;
padding: 5px;
border-radius: 5px;
position: absolute;
z-index: 1; /* Set z-index to 1 */
left: 10px;
top: 100%;
opacity: 0;
transition: opacity 0.3s;
}
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;
z-index: 9999; /* Set a high z-index value when hovering */
}
"""
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_path = "stabilityai/stable-diffusion-xl-base-1.0"
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
model = StableDiffusionXLPipeline.from_pretrained(model_path, scheduler=scheduler, torch_dtype=torch.float16).to(device)
model.unet.set_default_attn_processor()
model.enable_xformers_memory_efficient_attention()
model.enable_sequential_cpu_offload()
with gr.Blocks(
css=css,
title="Bounded Attention demo",
) as demo:
description = """<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px">Bounded Attention</span>
<br>
<span style="font-size: 18px" id="paper-info">
[<a href="https://omer11a.github.io/bounded-attention/" target="_blank">Project Page</a>]
[<a href=" " target="_blank">Paper</a>]
[<a href="https://github.com/omer11a/bounded-attention" target="_blank">GitHub</a>]
</span>
</p>
"""
gr.HTML(description)
with gr.Column():
prompt = gr.Textbox(
label="Text prompt",
)
subject_token_indices = gr.Textbox(
label="The token indices of each subject (separate indices for the same subject with commas, and between different subjects with semicolons)",
)
filter_token_indices = gr.Textbox(
label="The token indices to filter, i.e. conjunctions, number, postional relations, etc. (if left empty, this will be automatically inferred)",
)
num_tokens = gr.Textbox(
label="The number of tokens in the prompt (can be left empty, but we recommend filling this, so we can verify your input, as sometimes rare words are split into more than one token)",
)
with gr.Row():
sketch_pad = gr.Sketchpad(label="Sketch Pad", shape=(RESOLUTION, RESOLUTION))
layout_image = gr.Image(type="pil", label="Bounding Boxes")
out_images = gr.Image(type="pil", visible=True, label="Generated Image")
with gr.Row():
clear_button = gr.Button(value='Clear')
generate_button = gr.Button(value='Generate')
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
description = """
<div class="tooltip">Batch size ⓘ
<span class="tooltiptext">The number of images to generate.</span>
</div>
<div class="tooltip">Initial step size ⓘ
<span class="tooltiptext">The initial step size of the linear step size scheduler when performing guidance.</span>
</div>
<div class="tooltip">Final step size ⓘ
<span class="tooltiptext">The final step size of the linear step size scheduler when performing guidance.</span>
</div>
<div class="tooltip">Number of self-attention clusters per subject ⓘ
<span class="tooltiptext">Determines the number of clusters when clustering the self-attention maps (#clusters = #subject x #clusters_per_subject). Changing this value might improve semantics (adherence to the prompt), especially when the subjects exceed their bounding boxes.</span>
</div>
<div class="tooltip">Cross-attention loss scale factor ⓘ
<span class="tooltiptext">The scale factor of the cross-attention loss term. Increasing it will improve semantic control (adherence to the prompt), but may reduce image quality.</span>
</div>
<div class="tooltip">Self-attention loss scale factor ⓘ
<span class="tooltiptext">The scale factor of the self-attention loss term. Increasing it will improve layout control (adherence to the bounding boxes), but may reduce image quality.</span>
</div>
<div class="tooltip">Classifier-free guidance scale ⓘ
<span class="tooltiptext">The scale factor of classifier-free guidance.</span>
</div>
<div class="tooltip" >Number of Gradient Descent iterations per timestep ⓘ
<span class="tooltiptext">The number of Gradient Descent iterations for each timestep when performing guidance.</span>
</div>
<div class="tooltip" >Loss Threshold ⓘ
<span class="tooltiptext">If the loss is below the threshold, Gradient Descent stops for that timestep. </span>
</div>
<div class="tooltip" >Number of guidance steps ⓘ
<span class="tooltiptext">The number of timesteps in which to perform guidance.</span>
</div>
"""
gr.HTML(description)
batch_size = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Number of samples")
init_step_size = gr.Slider(minimum=0, maximum=50, step=0.5, value=25, label="Initial step size")
final_step_size = gr.Slider(minimum=0, maximum=20, step=0.5, value=10, label="Final step size")
num_clusters_per_subject = gr.Slider(minimum=0, maximum=5, step=0.5, value=3, label="Number of clusters per subject")
cross_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Cross-attention loss scale factor")
self_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Self-attention loss scale factor")
classifier_free_guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Classifier-free guidance Scale")
num_iterations = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Number of Gradient Descent iterations")
loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss threshold")
num_guidance_steps = gr.Slider(minimum=10, maximum=20, step=1, value=15, label="Number of timesteps to perform guidance")
seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed")
boxes = gr.State([])
sketch_pad.edit(
draw,
inputs=[boxes, sketch_pad, layout_image],
outputs=[boxes, sketch_pad, layout_image],
queue=False,
)
clear_button.click(
clear,
inputs=[batch_size],
outputs=[boxes, sketch_pad, layout_image, out_images],
queue=False,
)
generate_button.click(
fn=partial(generate, device, model),
inputs=[
prompt, subject_token_indices, filter_token_indices, num_tokens,
init_step_size, final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale,
classifier_free_guidance_scale, batch_size, num_iterations, loss_threshold, num_guidance_steps,
seed,
boxes,
],
outputs=[out_images],
queue=True,
)
#with gr.Column():
# gr.Examples(
# examples=[
# [
# [[0.35, 0.4, 0.65, 0.9], [0, 0.6, 0.3, 0.9], [0.7, 0.55, 1, 0.85]],
# "3D Pixar animation of a cute unicorn and a pink hedgehog and a nerdy owl traveling in a magical forest",
# "7,8,17;11,12,17;15,16,17",
# "5,6,9,10,13,14,18,19",
# 286,
# ],
# ],
# inputs=[boxes, prompt, subject_token_indices, filter_token_indices, seed],
# outputs=None,
# fn=None,
# cache_examples=False,
# )
description = """<p> The source code of this demo is based on the <a href="https://huggingface.co/spaces/gligen/demo/tree/main">GLIGEN demo</a>.</p>"""
gr.HTML(description)
demo.queue(max_size=50)
demo.launch(share=False, show_api=False, show_error=True)
if __name__ == '__main__':
main()
|