Spaces:
Runtime error
Runtime error
# app.py | |
import gradio as gr | |
import pandas as pd # Import pandas | |
from ocr_request import ocr_request | |
import os | |
from dotenv import load_dotenv | |
import openai | |
import json | |
def process_file(files): | |
response_arr = [] | |
# Send the uploaded file to the function from ocr_request.py | |
for file in files: | |
response = ocr_request(file.name) | |
response_arr.append(response) | |
print("Main file :", response_arr) | |
#i= [[{'invoice_number': '349136', 'product_description': '1ST FLOOR WALLS', 'predicted_material': 'Framing', 'confidence': 0.8}, {'invoice_number': '349136', 'product_description': "11.875 X 16 ' Pro Lam 2.0 LVL 1.75 ( 7 @ 16 ' , 4 @\n8 ' )", 'predicted_material': 'Framing', 'confidence': 0.9}, {'invoice_number': '349136', 'product_description': "COLUMN\n11.875 X 10 ' Pro Lam 2.0 LVL 1.75", 'predicted_material': 'Framing', 'confidence': 0.9}, {'invoice_number': '3495565136', 'product_description': "Power Column 3 1/2 X 5 1/2 - 08 '", 'predicted_material': 'Framing', 'confidence': 0.9}],[{'invoice_number': '349136', 'product_description': ' FLOOR WALLS', 'predicted_material': 'Framing', 'confidence': 0.8}, {'invoice_number': '349136', 'product_description': "11.875 X 16 ' Pro Lam 2.0 LVL 1.75 ( 7 @ 16 ' , 4 @\n8 ' )", 'predicted_material': 'Framing', 'confidence': 0.9}, {'invoice_number': '349136', 'product_description': "COLUMN\n11.875 X 10 ' Pro Lam 2.0 LVL 1.75", 'predicted_material': 'Framing', 'confidence': 0.9}, {'invoice_number': '349136', 'product_description': "Power Column 3 1/2 X 5 1/2 - 08 '", 'predicted_material': 'Framing', 'confidence': 0.9}]] | |
# flat_list = [] | |
# for item in response_arr: | |
# invoice_number = item['invoice_number'] | |
# # Extracting product descriptions | |
# products = item.get('predictions', []) or item.get('product_description', []) | |
# for product in products: | |
# # Rename 'description' key to 'product_description' for uniformity across all products | |
# product_description = product.get('product_description', product.get('description')) | |
# predicted_material = product['predicted_material'] | |
# confidence = product['confidence'] | |
# flat_list.append({ | |
# 'invoice_number': invoice_number, | |
# 'product_description': product_description, | |
# 'predicted_material': predicted_material, | |
# 'confidence': confidence | |
# }) | |
load_dotenv() | |
# Initialize OpenAI with your API key | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
prompt =f""" | |
you are an excellent programmer and an anlyst. Given a json array or a json, you need to analyse it and convert into a json format which can be converted in dataframe of pandas easily. You have a singular task : | |
Once you have thought through, produce a json, easily convertible to a dataframe in python, which would contain invoice number, product description, predicted material, confidence. Remember: You just have to share the o/p json, no thought process or anything else. | |
Here is the json array/json : {json.dumps(response_arr)} | |
""" | |
messages=[{"role": "user", "content":prompt}] | |
# Use OpenAI to generate a completion using GPT-4 (replace 'gpt-4.0-turbo' with the correct engine ID once available) | |
response = openai.ChatCompletion.create( | |
model="gpt-4", | |
max_tokens=5000, | |
temperature=0, | |
messages = messages | |
) | |
# Extracting the result | |
result = response.choices[0]["message"]["content"] | |
print("After in min gpt") | |
print(json.loads(result)) | |
df = pd.DataFrame(json.loads(result)) | |
# df = pd.DataFrame(flat_list) | |
print("Df final : ", df) | |
# Save the dataframe to a CSV in-memory | |
result_csv = df.to_csv(index=False) | |
csv_filename = "categories.csv" | |
with open(csv_filename, "w") as f: | |
f.write(result_csv) | |
return df,csv_filename # Gradio will display this as a table | |
interface = gr.Interface(fn=process_file, | |
inputs=gr.inputs.File(label="Upload a File", file_count='multiple'), | |
outputs=["dataframe",gr.outputs.File(label="Download CSV")]) # Specify "dataframe" as output type | |
interface.launch(share=True) | |