import streamlit as st import os import requests import pickle import pandas as pd import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize, sent_tokenize from nltk.stem import WordNetLemmatizer import numpy as np nltk.download('punkt') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') nltk.download('wordnet') # needed for lemmatization # Setting up Hugging Face API for NER API_URL = "https://api-inference.huggingface.co/models/spacy/en_core_web_sm" headers = {"Authorization": "Bearer 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"} def get_entities(text): data = {"inputs": text} response = requests.post(API_URL, headers=headers, json=data) entities = [item['entity_group'] for item in response.json()[0]] return len(entities) # Set up lemmatizer lemmatizer = WordNetLemmatizer() #title st.title("Smart Detection System of AI-Generated Text Models") st.markdown("## This is a POC repo for Smart Detection System of AI Generated Text Models project, it is a pre-trained model that detect the probabilities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)##") # Check if the file exists if not os.path.isfile('RandomForestClassifier.pkl'): # Download the zip file if it doesn't exist url = 'https://jaifar.net/RandomForestClassifier.pkl' headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} response = requests.get(url, headers=headers) # Save the file with open('RandomForestClassifier.pkl', 'wb') as file: file.write(response.content) with open('RandomForestClassifier.pkl', 'rb') as file: clf_loaded = pickle.load(file) input_paragraph = st.text_area("Input your text here") df = pd.DataFrame(columns=["paragraph"]) df = df.append({"paragraph": input_paragraph}, ignore_index=True) num_words = 500 input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words]) def extract_features(text): words = word_tokenize(text) sentences = sent_tokenize(text) avg_word_length = sum(len(word) for word in words) / len(words) avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences) punctuation_count = len([char for char in text if char in '.,;:?!']) stopword_count = len([word for word in words if word in stopwords.words('english')]) lemma_count = len(set(lemmatizer.lemmatize(word) for word in words)) named_entity_count = get_entities(text) tagged_words = nltk.pos_tag(words) pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words) pos_features = { 'pos_IN': pos_counts['IN'], 'pos_DT': pos_counts['DT'], 'pos_NN': pos_counts['NN'], 'pos_,': pos_counts[','], 'pos_VBZ': pos_counts['VBZ'], 'pos_WDT': pos_counts['WDT'], 'pos_TO': pos_counts['TO'], 'pos_VB': pos_counts['VB'], 'pos_VBG': pos_counts['VBG'], 'pos_.': pos_counts['.'], 'pos_JJ': pos_counts['JJ'], 'pos_NNS': pos_counts['NNS'], 'pos_RB': pos_counts['RB'], 'pos_CC': pos_counts['CC'], 'pos_VBN': pos_counts['VBN'], } features = { 'avg_word_length': avg_word_length, 'avg_sent_length': avg_sent_length, 'punctuation_count': punctuation_count, 'stopword_count': stopword_count, 'lemma_count': lemma_count, 'named_entity_count': named_entity_count, } features.update(pos_features) return pd.Series(features) press_me_button = st.button("Press me") if press_me_button: input_features = df['paragraph'].apply(extract_features) predicted_llm = clf_loaded.predict(input_features) st.write(f"Predicted LLM: {predicted_llm[0]}")