Spaces:
Runtime error
Runtime error
jaifar530
commited on
new version
Browse files
app.py
CHANGED
|
@@ -1,40 +1,30 @@
|
|
| 1 |
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
#subtitle
|
| 4 |
-
st.markdown("version:
|
| 5 |
#title
|
| 6 |
st.title("Smart Detection System of AI-Generated Text Models")
|
| 7 |
|
| 8 |
#subtitle
|
| 9 |
st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import os
|
| 12 |
import requests
|
| 13 |
-
|
| 14 |
-
import pandas as pd
|
| 15 |
-
import nltk
|
| 16 |
-
import spacy
|
| 17 |
-
from nltk.corpus import stopwords
|
| 18 |
-
from nltk.tokenize import word_tokenize, sent_tokenize
|
| 19 |
import numpy as np
|
| 20 |
############
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
from nltk.tree import Tree
|
| 24 |
-
from joblib import dump, load
|
| 25 |
-
nltk.download('wordnet')
|
| 26 |
-
nltk.download('maxent_ne_chunker')
|
| 27 |
-
nltk.download('words')
|
| 28 |
-
|
| 29 |
-
#######
|
| 30 |
-
nltk.download('punkt')
|
| 31 |
-
nltk.download('stopwords')
|
| 32 |
-
nltk.download('averaged_perceptron_tagger')
|
| 33 |
|
| 34 |
# Check if the file exists
|
| 35 |
-
if not os.path.isfile('
|
| 36 |
|
| 37 |
-
url = 'https://jaifar.net/
|
| 38 |
headers = {
|
| 39 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
| 40 |
}
|
|
@@ -42,116 +32,230 @@ if not os.path.isfile('RandomForestClassifier.joblib'):
|
|
| 42 |
response = requests.get(url, headers=headers)
|
| 43 |
|
| 44 |
|
| 45 |
-
with open('
|
| 46 |
file.write(response.content)
|
| 47 |
|
| 48 |
|
| 49 |
-
#
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
# # At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
|
| 53 |
-
# with open('RandomForestClassifier.pkl', 'rb') as file:
|
| 54 |
-
# clf_loaded = pickle.load(file)
|
| 55 |
|
| 56 |
input_paragraph = st.text_area("Input your text here")
|
| 57 |
words_counts = word_tokenize(input_paragraph)
|
| 58 |
final_words = len(words_counts)
|
| 59 |
st.write('Words counts: ', final_words)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
# df = pd.DataFrame(columns=["paragraph"])
|
| 64 |
-
# df = df.append({"paragraph": input_paragraph}, ignore_index=True)
|
| 65 |
|
| 66 |
df = pd.DataFrame([input_paragraph], columns=["paragraph"])
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
# Variable to control number of words to retrieve
|
| 71 |
-
num_words = 500
|
| 72 |
-
|
| 73 |
-
# Retrieving only the first num_words words of the paragraph
|
| 74 |
-
input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
|
| 75 |
-
|
| 76 |
# Extracting features
|
| 77 |
def extract_features(text):
|
| 78 |
-
|
| 79 |
-
sentences = sent_tokenize(text)
|
| 80 |
-
|
| 81 |
-
avg_word_length = sum(len(word) for word in words if word.isalpha()) / len(words)
|
| 82 |
-
avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
|
| 83 |
-
punctuation_count = len([char for char in text if char in '.,;:?!'])
|
| 84 |
-
stopword_count = len([word for word in words if word in stopwords.words('english')])
|
| 85 |
-
|
| 86 |
-
lemmatizer = WordNetLemmatizer()
|
| 87 |
-
lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
|
| 88 |
-
|
| 89 |
-
named_entity_count = len([chunk for chunk in ne_chunk(pos_tag(words)) if isinstance(chunk, Tree)])
|
| 90 |
-
|
| 91 |
-
tagged_words = nltk.pos_tag(words)
|
| 92 |
-
pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
|
| 93 |
-
pos_features = {
|
| 94 |
-
'pos_IN': pos_counts['IN'],
|
| 95 |
-
'pos_DT': pos_counts['DT'],
|
| 96 |
-
'pos_NN': pos_counts['NN'],
|
| 97 |
-
'pos_,': pos_counts[','],
|
| 98 |
-
'pos_VBZ': pos_counts['VBZ'],
|
| 99 |
-
'pos_WDT': pos_counts['WDT'],
|
| 100 |
-
'pos_TO': pos_counts['TO'],
|
| 101 |
-
'pos_VB': pos_counts['VB'],
|
| 102 |
-
'pos_VBG': pos_counts['VBG'],
|
| 103 |
-
'pos_.': pos_counts['.'],
|
| 104 |
-
'pos_JJ': pos_counts['JJ'],
|
| 105 |
-
'pos_NNS': pos_counts['NNS'],
|
| 106 |
-
'pos_RB': pos_counts['RB'],
|
| 107 |
-
'pos_CC': pos_counts['CC'],
|
| 108 |
-
'pos_VBN': pos_counts['VBN'],
|
| 109 |
-
}
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
'avg_sent_length': avg_sent_length,
|
| 114 |
-
'punctuation_count': punctuation_count,
|
| 115 |
-
'stopword_count': stopword_count,
|
| 116 |
-
'lemma_count': lemma_count,
|
| 117 |
-
'named_entity_count': named_entity_count,
|
| 118 |
-
}
|
| 119 |
-
features.update(pos_features)
|
| 120 |
|
| 121 |
-
|
|
|
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
# Creates a button named 'Press me'
|
| 125 |
-
press_me_button = st.button("Which Model Used?")
|
| 126 |
|
| 127 |
if press_me_button:
|
| 128 |
input_features = df['paragraph'].apply(extract_features)
|
| 129 |
predicted_llm = clf_loaded.predict(input_features)
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
labels = clf_loaded.classes_
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
|
| 149 |
-
#st.write(prob_dict)
|
| 150 |
|
| 151 |
-
# Create a progress bar and a bar chart for each LLM
|
| 152 |
-
for llm, prob in prob_dict.items():
|
| 153 |
-
st.write(llm + ': ' + prob)
|
| 154 |
-
st.progress(float(prob.strip('%'))/100)
|
| 155 |
|
| 156 |
# import streamlit as st
|
| 157 |
# import os
|
|
|
|
| 1 |
|
| 2 |
+
|
| 3 |
import streamlit as st
|
| 4 |
#subtitle
|
| 5 |
+
st.markdown("version: 2.0")
|
| 6 |
#title
|
| 7 |
st.title("Smart Detection System of AI-Generated Text Models")
|
| 8 |
|
| 9 |
#subtitle
|
| 10 |
st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")
|
| 11 |
|
| 12 |
+
import pickle
|
| 13 |
+
import pandas as pd
|
| 14 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 15 |
+
from sklearn.linear_model import RidgeClassifier
|
| 16 |
import os
|
| 17 |
import requests
|
| 18 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
import numpy as np
|
| 20 |
############
|
| 21 |
+
|
| 22 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Check if the file exists
|
| 25 |
+
if not os.path.isfile('ridge_100%_BOW_ngram_full_text.pkl'):
|
| 26 |
|
| 27 |
+
url = 'https://jaifar.net/ridge_100%_BOW_ngram_full_text.pkl'
|
| 28 |
headers = {
|
| 29 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
| 30 |
}
|
|
|
|
| 32 |
response = requests.get(url, headers=headers)
|
| 33 |
|
| 34 |
|
| 35 |
+
with open('ridge_100%_BOW_ngram_full_text.pkl', 'wb') as file:
|
| 36 |
file.write(response.content)
|
| 37 |
|
| 38 |
|
| 39 |
+
# At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
|
| 40 |
+
with open('ridge_100%_BOW_ngram_full_text.pkl', 'rb') as file:
|
| 41 |
+
clf_loaded = pickle.load(file)
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
input_paragraph = st.text_area("Input your text here")
|
| 44 |
words_counts = word_tokenize(input_paragraph)
|
| 45 |
final_words = len(words_counts)
|
| 46 |
st.write('Words counts: ', final_words)
|
| 47 |
|
| 48 |
+
# Creates a button named 'Press me'
|
| 49 |
+
press_me_button = st.button("Which Model Used?")
|
|
|
|
|
|
|
| 50 |
|
| 51 |
df = pd.DataFrame([input_paragraph], columns=["paragraph"])
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
# Extracting features
|
| 54 |
def extract_features(text):
|
| 55 |
+
vectorizer = CountVectorizer(ngram_range=(1, 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# Convert the paragraphs into a matrix of token counts
|
| 58 |
+
X_vect = vectorizer.fit_transform(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
# Get the feature names
|
| 61 |
+
feature_names = vectorizer.get_feature_names_out()
|
| 62 |
|
| 63 |
+
# Convert the matrix to a DataFrame
|
| 64 |
+
X_df = pd.DataFrame(X_vect.toarray(), columns=feature_names)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
return pd.Series(X_df)
|
| 68 |
|
|
|
|
|
|
|
| 69 |
|
| 70 |
if press_me_button:
|
| 71 |
input_features = df['paragraph'].apply(extract_features)
|
| 72 |
predicted_llm = clf_loaded.predict(input_features)
|
| 73 |
+
st.write(f"Predicted LLM: {predicted_llm[0]}")
|
| 74 |
+
|
| 75 |
+
# predicted_proba = clf_loaded.predict_proba(input_features)
|
| 76 |
+
# probabilities = predicted_proba[0]
|
| 77 |
+
# labels = clf_loaded.classes_
|
| 78 |
+
|
| 79 |
+
# # Create a mapping from old labels to new labels
|
| 80 |
+
# label_mapping = {1: 'gpt3', 2: 'gpt4', 3: 'googlebard', 4: 'huggingface'}
|
| 81 |
+
|
| 82 |
+
# # Apply the mapping to the labels
|
| 83 |
+
# new_labels = [label_mapping[label] for label in labels]
|
| 84 |
+
|
| 85 |
+
# # Create a dictionary that maps new labels to probabilities
|
| 86 |
+
# prob_dict = {k: v for k, v in zip(new_labels, probabilities)}
|
| 87 |
+
|
| 88 |
+
# # Convert probabilities to percentages and sort the dictionary in descending order
|
| 89 |
+
# prob_dict = {k: f'{v*100:.2f}%' for k, v in sorted(prob_dict.items(), key=lambda item: item[1], reverse=True)}
|
| 90 |
+
|
| 91 |
+
# # Print the dictionary
|
| 92 |
+
# #st.write(prob_dict)
|
| 93 |
+
|
| 94 |
+
# # Create a progress bar and a bar chart for each LLM
|
| 95 |
+
# for llm, prob in prob_dict.items():
|
| 96 |
+
# st.write(llm + ': ' + prob)
|
| 97 |
+
# st.progress(float(prob.strip('%'))/100)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
#####################################################################
|
| 102 |
+
|
| 103 |
+
# import streamlit as st
|
| 104 |
+
# #subtitle
|
| 105 |
+
# st.markdown("version: 1.2")
|
| 106 |
+
# #title
|
| 107 |
+
# st.title("Smart Detection System of AI-Generated Text Models")
|
| 108 |
+
|
| 109 |
+
# #subtitle
|
| 110 |
+
# st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")
|
| 111 |
+
|
| 112 |
+
# import os
|
| 113 |
+
# import requests
|
| 114 |
+
# # import pickle
|
| 115 |
+
# import pandas as pd
|
| 116 |
+
# import nltk
|
| 117 |
+
# import spacy
|
| 118 |
+
# from nltk.corpus import stopwords
|
| 119 |
+
# from nltk.tokenize import word_tokenize, sent_tokenize
|
| 120 |
+
# import numpy as np
|
| 121 |
+
# ############
|
| 122 |
+
# from nltk.stem import WordNetLemmatizer
|
| 123 |
+
# from nltk import ne_chunk, pos_tag, word_tokenize
|
| 124 |
+
# from nltk.tree import Tree
|
| 125 |
+
# from joblib import dump, load
|
| 126 |
+
# nltk.download('wordnet')
|
| 127 |
+
# nltk.download('maxent_ne_chunker')
|
| 128 |
+
# nltk.download('words')
|
| 129 |
+
|
| 130 |
+
# #######
|
| 131 |
+
# nltk.download('punkt')
|
| 132 |
+
# nltk.download('stopwords')
|
| 133 |
+
# nltk.download('averaged_perceptron_tagger')
|
| 134 |
+
|
| 135 |
+
# # Check if the file exists
|
| 136 |
+
# if not os.path.isfile('RandomForestClassifier.joblib'):
|
| 137 |
+
|
| 138 |
+
# url = 'https://jaifar.net/RandomForestClassifier.joblib'
|
| 139 |
+
# headers = {
|
| 140 |
+
# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
| 141 |
+
# }
|
| 142 |
+
|
| 143 |
+
# response = requests.get(url, headers=headers)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# with open('RandomForestClassifier.joblib', 'wb') as file:
|
| 147 |
+
# file.write(response.content)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# # Load the model from the file
|
| 151 |
+
# clf_loaded = load('RandomForestClassifier.joblib')
|
| 152 |
+
|
| 153 |
+
# # # At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
|
| 154 |
+
# # with open('RandomForestClassifier.pkl', 'rb') as file:
|
| 155 |
+
# # clf_loaded = pickle.load(file)
|
| 156 |
+
|
| 157 |
+
# input_paragraph = st.text_area("Input your text here")
|
| 158 |
+
# words_counts = word_tokenize(input_paragraph)
|
| 159 |
+
# final_words = len(words_counts)
|
| 160 |
+
# st.write('Words counts: ', final_words)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
# # df = pd.DataFrame(columns=["paragraph"])
|
| 165 |
+
# # df = df.append({"paragraph": input_paragraph}, ignore_index=True)
|
| 166 |
+
|
| 167 |
+
# df = pd.DataFrame([input_paragraph], columns=["paragraph"])
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
# # Variable to control number of words to retrieve
|
| 172 |
+
# num_words = 500
|
| 173 |
+
|
| 174 |
+
# # Retrieving only the first num_words words of the paragraph
|
| 175 |
+
# input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
|
| 176 |
+
|
| 177 |
+
# # Extracting features
|
| 178 |
+
# def extract_features(text):
|
| 179 |
+
# words = word_tokenize(text)
|
| 180 |
+
# sentences = sent_tokenize(text)
|
| 181 |
+
|
| 182 |
+
# avg_word_length = sum(len(word) for word in words if word.isalpha()) / len(words)
|
| 183 |
+
# avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
|
| 184 |
+
# punctuation_count = len([char for char in text if char in '.,;:?!'])
|
| 185 |
+
# stopword_count = len([word for word in words if word in stopwords.words('english')])
|
| 186 |
+
|
| 187 |
+
# lemmatizer = WordNetLemmatizer()
|
| 188 |
+
# lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
|
| 189 |
+
|
| 190 |
+
# named_entity_count = len([chunk for chunk in ne_chunk(pos_tag(words)) if isinstance(chunk, Tree)])
|
| 191 |
+
|
| 192 |
+
# tagged_words = nltk.pos_tag(words)
|
| 193 |
+
# pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
|
| 194 |
+
# pos_features = {
|
| 195 |
+
# 'pos_IN': pos_counts['IN'],
|
| 196 |
+
# 'pos_DT': pos_counts['DT'],
|
| 197 |
+
# 'pos_NN': pos_counts['NN'],
|
| 198 |
+
# 'pos_,': pos_counts[','],
|
| 199 |
+
# 'pos_VBZ': pos_counts['VBZ'],
|
| 200 |
+
# 'pos_WDT': pos_counts['WDT'],
|
| 201 |
+
# 'pos_TO': pos_counts['TO'],
|
| 202 |
+
# 'pos_VB': pos_counts['VB'],
|
| 203 |
+
# 'pos_VBG': pos_counts['VBG'],
|
| 204 |
+
# 'pos_.': pos_counts['.'],
|
| 205 |
+
# 'pos_JJ': pos_counts['JJ'],
|
| 206 |
+
# 'pos_NNS': pos_counts['NNS'],
|
| 207 |
+
# 'pos_RB': pos_counts['RB'],
|
| 208 |
+
# 'pos_CC': pos_counts['CC'],
|
| 209 |
+
# 'pos_VBN': pos_counts['VBN'],
|
| 210 |
+
# }
|
| 211 |
+
|
| 212 |
+
# features = {
|
| 213 |
+
# 'avg_word_length': avg_word_length,
|
| 214 |
+
# 'avg_sent_length': avg_sent_length,
|
| 215 |
+
# 'punctuation_count': punctuation_count,
|
| 216 |
+
# 'stopword_count': stopword_count,
|
| 217 |
+
# 'lemma_count': lemma_count,
|
| 218 |
+
# 'named_entity_count': named_entity_count,
|
| 219 |
+
# }
|
| 220 |
+
# features.update(pos_features)
|
| 221 |
+
|
| 222 |
+
# return pd.Series(features)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
# # Creates a button named 'Press me'
|
| 226 |
+
# press_me_button = st.button("Which Model Used?")
|
| 227 |
+
|
| 228 |
+
# if press_me_button:
|
| 229 |
+
# input_features = df['paragraph'].apply(extract_features)
|
| 230 |
+
# predicted_llm = clf_loaded.predict(input_features)
|
| 231 |
+
# #st.write(f"Predicted LLM: {predicted_llm[0]}")
|
| 232 |
+
|
| 233 |
+
# predicted_proba = clf_loaded.predict_proba(input_features)
|
| 234 |
+
# probabilities = predicted_proba[0]
|
| 235 |
+
# labels = clf_loaded.classes_
|
| 236 |
+
|
| 237 |
+
# # Create a mapping from old labels to new labels
|
| 238 |
+
# label_mapping = {1: 'gpt3', 2: 'gpt4', 3: 'googlebard', 4: 'huggingface'}
|
| 239 |
|
| 240 |
+
# # Apply the mapping to the labels
|
| 241 |
+
# new_labels = [label_mapping[label] for label in labels]
|
|
|
|
| 242 |
|
| 243 |
+
# # Create a dictionary that maps new labels to probabilities
|
| 244 |
+
# prob_dict = {k: v for k, v in zip(new_labels, probabilities)}
|
| 245 |
|
| 246 |
+
# # Convert probabilities to percentages and sort the dictionary in descending order
|
| 247 |
+
# prob_dict = {k: f'{v*100:.2f}%' for k, v in sorted(prob_dict.items(), key=lambda item: item[1], reverse=True)}
|
| 248 |
|
| 249 |
+
# # Print the dictionary
|
| 250 |
+
# #st.write(prob_dict)
|
| 251 |
|
| 252 |
+
# # Create a progress bar and a bar chart for each LLM
|
| 253 |
+
# for llm, prob in prob_dict.items():
|
| 254 |
+
# st.write(llm + ': ' + prob)
|
| 255 |
+
# st.progress(float(prob.strip('%'))/100)
|
| 256 |
|
| 257 |
+
############################################################
|
|
|
|
| 258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
# import streamlit as st
|
| 261 |
# import os
|