Spaces:
Sleeping
Sleeping
jaifar530
commited on
dd
Browse files
app.py
CHANGED
@@ -1,4 +1,12 @@
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
import requests
|
4 |
import pickle
|
@@ -12,7 +20,6 @@ import numpy as np
|
|
12 |
from nltk.stem import WordNetLemmatizer
|
13 |
from nltk import ne_chunk, pos_tag, word_tokenize
|
14 |
from nltk.tree import Tree
|
15 |
-
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
|
16 |
nltk.download('wordnet')
|
17 |
nltk.download('maxent_ne_chunker')
|
18 |
nltk.download('words')
|
@@ -22,59 +29,10 @@ nltk.download('punkt')
|
|
22 |
nltk.download('stopwords')
|
23 |
nltk.download('averaged_perceptron_tagger')
|
24 |
|
25 |
-
#version
|
26 |
-
st.markdown("v1.9")
|
27 |
-
|
28 |
-
|
29 |
-
# URL of the text file
|
30 |
-
url = 'https://jaifar.net/text.txt'
|
31 |
-
|
32 |
-
headers = {
|
33 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
34 |
-
}
|
35 |
-
|
36 |
-
response = requests.get(url, headers=headers)
|
37 |
-
|
38 |
-
# Check if the request was successful
|
39 |
-
if response.status_code == 200:
|
40 |
-
# Read the content of the file
|
41 |
-
content = response.text
|
42 |
-
|
43 |
-
# Print the content of the file
|
44 |
-
# print(content)
|
45 |
-
else:
|
46 |
-
# Handle the case when the request fails
|
47 |
-
print('Failed to download the file.')
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
#title
|
52 |
-
st.title("Smart Detection System of AI-Generated Text Models")
|
53 |
-
|
54 |
-
#subtitle
|
55 |
-
st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")
|
56 |
-
|
57 |
-
#input text
|
58 |
-
input_paragraph = st.text_area("Input your text here")
|
59 |
-
words_counts = word_tokenize(input_paragraph)
|
60 |
-
final_words = len(words_counts)
|
61 |
-
st.write('Words counts: ', final_words)
|
62 |
-
|
63 |
-
# Define your options
|
64 |
-
options = ["AI vs AI - RandomForest - 88 Samples", "AI vs AI - Ridge - 2000 Samples", "AI vs Human"]
|
65 |
-
|
66 |
-
# Create a dropdown menu with "Option 2" as the default
|
67 |
-
# selected_option = st.selectbox('Select an Option', options, index=1)
|
68 |
-
selected_option = st.selectbox('Select an Option', options)
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
# Check if the file exists
|
75 |
-
if not os.path.isfile('
|
76 |
# Download the zip file if it doesn't exist
|
77 |
-
url = 'https://jaifar.net/
|
78 |
headers = {
|
79 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
80 |
}
|
@@ -82,8 +40,18 @@ if not os.path.isfile('AI_vs_AI_Ridge_2000_Samples.pkl'):
|
|
82 |
response = requests.get(url, headers=headers)
|
83 |
|
84 |
# Save the file
|
85 |
-
with open('
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
|
@@ -100,9 +68,8 @@ num_words = 500
|
|
100 |
# Retrieving only the first num_words words of the paragraph
|
101 |
input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
|
102 |
|
103 |
-
|
104 |
# Extracting features
|
105 |
-
def
|
106 |
words = word_tokenize(text)
|
107 |
sentences = sent_tokenize(text)
|
108 |
|
@@ -149,182 +116,365 @@ def extract_features_AI_vs_AI_RandomForest_88_Samples(text):
|
|
149 |
return pd.Series(features)
|
150 |
|
151 |
|
|
|
|
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
sentences = sent_tokenize(text)
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
stopword_count = len([word for word in words if word in stopwords.words('english')])
|
163 |
|
164 |
-
|
165 |
-
|
166 |
|
167 |
-
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
pos_features = {
|
172 |
-
'pos_IN': pos_counts['IN'],
|
173 |
-
'pos_DT': pos_counts['DT'],
|
174 |
-
'pos_NN': pos_counts['NN'],
|
175 |
-
'pos_,': pos_counts[','],
|
176 |
-
'pos_VBZ': pos_counts['VBZ'],
|
177 |
-
'pos_WDT': pos_counts['WDT'],
|
178 |
-
'pos_TO': pos_counts['TO'],
|
179 |
-
'pos_VB': pos_counts['VB'],
|
180 |
-
'pos_PRP': pos_counts['PRP'],
|
181 |
-
'pos_VBP': pos_counts['VBP'],
|
182 |
-
'pos_VBG': pos_counts['VBG'],
|
183 |
-
'pos_.': pos_counts['.'],
|
184 |
-
'pos_JJ': pos_counts['JJ'],
|
185 |
-
'pos_NNS': pos_counts['NNS'],
|
186 |
-
'pos_RB': pos_counts['RB'],
|
187 |
-
'pos_PRP$': pos_counts['PRP$'],
|
188 |
-
'pos_CC': pos_counts['CC'],
|
189 |
-
'pos_MD': pos_counts['MD'],
|
190 |
-
'pos_VBN': pos_counts['VBN'],
|
191 |
-
'pos_NNP': pos_counts['NNP'],
|
192 |
-
}
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
'avg_sent_length': avg_sent_length,
|
197 |
-
'punctuation_count': punctuation_count,
|
198 |
-
'stopword_count': stopword_count,
|
199 |
-
'lemma_count': lemma_count,
|
200 |
-
'named_entity_count': named_entity_count,
|
201 |
-
}
|
202 |
-
# features.update(pos_features)
|
203 |
-
features = pd.concat([features, pd.DataFrame(pos_features, index=[0])], axis=1)
|
204 |
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
-
# Function from Code(2)
|
208 |
-
def add_vectorized_features(df):
|
209 |
-
vectorizer = CountVectorizer()
|
210 |
-
tfidf_vectorizer = TfidfVectorizer()
|
211 |
-
X_bow = vectorizer.fit_transform(df['paragraph'])
|
212 |
-
X_tfidf = tfidf_vectorizer.fit_transform(df['paragraph'])
|
213 |
-
df_bow = pd.DataFrame(X_bow.toarray(), columns=vectorizer.get_feature_names_out())
|
214 |
-
df_tfidf = pd.DataFrame(X_tfidf.toarray(), columns=tfidf_vectorizer.get_feature_names_out())
|
215 |
-
df = pd.concat([df, df_bow, df_tfidf], axis=1)
|
216 |
-
return df
|
217 |
|
218 |
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
|
223 |
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
|
233 |
-
|
234 |
|
235 |
-
|
236 |
-
|
237 |
|
238 |
-
|
239 |
-
|
240 |
|
241 |
-
|
242 |
-
|
243 |
|
244 |
-
|
245 |
-
|
246 |
|
247 |
-
|
248 |
-
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
|
256 |
|
257 |
-
def AI_vs_AI_Ridge_2000_Samples(df):
|
258 |
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
|
263 |
|
264 |
-
|
265 |
|
266 |
-
|
267 |
-
|
268 |
|
269 |
-
|
270 |
-
|
271 |
|
272 |
-
|
273 |
-
|
274 |
|
275 |
-
|
276 |
-
|
277 |
|
278 |
-
|
279 |
|
280 |
|
281 |
|
282 |
-
# Check if the file exists
|
283 |
-
if not os.path.isfile('AI_vs_AI_RandomForest_88_Samples.pkl'):
|
284 |
-
# Download the zip file if it doesn't exist
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
|
290 |
-
|
291 |
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
try:
|
300 |
-
with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'rb') as file:
|
301 |
-
clf_loaded = pickle.load(file)
|
302 |
-
except Exception as e:
|
303 |
-
st.write(f"An error occurred while loading AI_vs_AI_RandomForest_88_Samples.pkl: {str(e)}")
|
304 |
-
|
305 |
-
# Creates a button
|
306 |
-
press_me_button = st.button("Which Model Used?")
|
307 |
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
-
|
311 |
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
|
329 |
|
330 |
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
+
|
4 |
+
#title
|
5 |
+
st.title("Smart Detection System of AI-Generated Text Models")
|
6 |
+
|
7 |
+
#subtitle
|
8 |
+
st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")
|
9 |
+
|
10 |
import os
|
11 |
import requests
|
12 |
import pickle
|
|
|
20 |
from nltk.stem import WordNetLemmatizer
|
21 |
from nltk import ne_chunk, pos_tag, word_tokenize
|
22 |
from nltk.tree import Tree
|
|
|
23 |
nltk.download('wordnet')
|
24 |
nltk.download('maxent_ne_chunker')
|
25 |
nltk.download('words')
|
|
|
29 |
nltk.download('stopwords')
|
30 |
nltk.download('averaged_perceptron_tagger')
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Check if the file exists
|
33 |
+
if not os.path.isfile('RandomForestClassifier.pkl'):
|
34 |
# Download the zip file if it doesn't exist
|
35 |
+
url = 'https://jaifar.net/RandomForestClassifier.pkl'
|
36 |
headers = {
|
37 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
38 |
}
|
|
|
40 |
response = requests.get(url, headers=headers)
|
41 |
|
42 |
# Save the file
|
43 |
+
with open('RandomForestClassifier.pkl', 'wb') as file:
|
44 |
+
file.write(response.content)
|
45 |
+
|
46 |
+
# At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
|
47 |
+
with open('RandomForestClassifier.pkl', 'rb') as file:
|
48 |
+
clf_loaded = pickle.load(file)
|
49 |
+
|
50 |
+
|
51 |
+
input_paragraph = st.text_area("Input your text here")
|
52 |
+
words_counts = word_tokenize(input_paragraph)
|
53 |
+
final_words = len(words_counts)
|
54 |
+
st.write('Words counts: ', final_words)
|
55 |
|
56 |
|
57 |
|
|
|
68 |
# Retrieving only the first num_words words of the paragraph
|
69 |
input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
|
70 |
|
|
|
71 |
# Extracting features
|
72 |
+
def extract_features(text):
|
73 |
words = word_tokenize(text)
|
74 |
sentences = sent_tokenize(text)
|
75 |
|
|
|
116 |
return pd.Series(features)
|
117 |
|
118 |
|
119 |
+
# Creates a button named 'Press me'
|
120 |
+
press_me_button = st.button("Which Model Used?")
|
121 |
|
122 |
+
if press_me_button:
|
123 |
+
input_features = df['paragraph'].apply(extract_features)
|
124 |
+
predicted_llm = clf_loaded.predict(input_features)
|
125 |
+
#st.write(f"Predicted LLM: {predicted_llm[0]}")
|
|
|
126 |
|
127 |
+
predicted_proba = clf_loaded.predict_proba(input_features)
|
128 |
+
probabilities = predicted_proba[0]
|
129 |
+
labels = clf_loaded.classes_
|
|
|
130 |
|
131 |
+
# Create a mapping from old labels to new labels
|
132 |
+
label_mapping = {1: 'gpt3', 2: 'gpt4', 3: 'googlebard', 4: 'huggingface'}
|
133 |
|
134 |
+
# Apply the mapping to the labels
|
135 |
+
new_labels = [label_mapping[label] for label in labels]
|
136 |
|
137 |
+
# Create a dictionary that maps new labels to probabilities
|
138 |
+
prob_dict = {k: v for k, v in zip(new_labels, probabilities)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
# Convert probabilities to percentages and sort the dictionary in descending order
|
141 |
+
prob_dict = {k: f'{v*100:.2f}%' for k, v in sorted(prob_dict.items(), key=lambda item: item[1], reverse=True)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
# Print the dictionary
|
144 |
+
#st.write(prob_dict)
|
145 |
+
|
146 |
+
# Create a progress bar and a bar chart for each LLM
|
147 |
+
for llm, prob in prob_dict.items():
|
148 |
+
st.write(llm + ': ' + prob)
|
149 |
+
st.progress(float(prob.strip('%'))/100)
|
150 |
+
|
151 |
+
# import streamlit as st
|
152 |
+
# import os
|
153 |
+
# import requests
|
154 |
+
# import pickle
|
155 |
+
# import pandas as pd
|
156 |
+
# import nltk
|
157 |
+
# import spacy
|
158 |
+
# from nltk.corpus import stopwords
|
159 |
+
# from nltk.tokenize import word_tokenize, sent_tokenize
|
160 |
+
# import numpy as np
|
161 |
+
# ############
|
162 |
+
# from nltk.stem import WordNetLemmatizer
|
163 |
+
# from nltk import ne_chunk, pos_tag, word_tokenize
|
164 |
+
# from nltk.tree import Tree
|
165 |
+
# from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
|
166 |
+
# nltk.download('wordnet')
|
167 |
+
# nltk.download('maxent_ne_chunker')
|
168 |
+
# nltk.download('words')
|
169 |
+
|
170 |
+
# #######
|
171 |
+
# nltk.download('punkt')
|
172 |
+
# nltk.download('stopwords')
|
173 |
+
# nltk.download('averaged_perceptron_tagger')
|
174 |
+
|
175 |
+
# #version
|
176 |
+
# st.markdown("v1.9")
|
177 |
+
|
178 |
+
|
179 |
+
# # URL of the text file
|
180 |
+
# url = 'https://jaifar.net/text.txt'
|
181 |
+
|
182 |
+
# headers = {
|
183 |
+
# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
184 |
+
# }
|
185 |
+
|
186 |
+
# response = requests.get(url, headers=headers)
|
187 |
+
|
188 |
+
# # Check if the request was successful
|
189 |
+
# if response.status_code == 200:
|
190 |
+
# # Read the content of the file
|
191 |
+
# content = response.text
|
192 |
+
|
193 |
+
# # Print the content of the file
|
194 |
+
# # print(content)
|
195 |
+
# else:
|
196 |
+
# # Handle the case when the request fails
|
197 |
+
# print('Failed to download the file.')
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
# #title
|
202 |
+
# st.title("Smart Detection System of AI-Generated Text Models")
|
203 |
+
|
204 |
+
# #subtitle
|
205 |
+
# st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")
|
206 |
+
|
207 |
+
# #input text
|
208 |
+
# input_paragraph = st.text_area("Input your text here")
|
209 |
+
# words_counts = word_tokenize(input_paragraph)
|
210 |
+
# final_words = len(words_counts)
|
211 |
+
# st.write('Words counts: ', final_words)
|
212 |
+
|
213 |
+
# # Define your options
|
214 |
+
# options = ["AI vs AI - RandomForest - 88 Samples", "AI vs AI - Ridge - 2000 Samples", "AI vs Human"]
|
215 |
+
|
216 |
+
# # Create a dropdown menu with "Option 2" as the default
|
217 |
+
# # selected_option = st.selectbox('Select an Option', options, index=1)
|
218 |
+
# selected_option = st.selectbox('Select an Option', options)
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
|
222 |
+
|
223 |
+
|
224 |
+
# # Check if the file exists
|
225 |
+
# if not os.path.isfile('AI_vs_AI_Ridge_2000_Samples.pkl'):
|
226 |
+
# # Download the zip file if it doesn't exist
|
227 |
+
# url = 'https://jaifar.net/AI_vs_AI_Ridge_2000_Samples.pkl'
|
228 |
+
# headers = {
|
229 |
+
# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
230 |
+
# }
|
231 |
+
|
232 |
+
# response = requests.get(url, headers=headers)
|
233 |
+
|
234 |
+
# # Save the file
|
235 |
+
# with open('AI_vs_AI_Ridge_2000_Samples.pkl', 'wb') as file2:
|
236 |
+
# file2.write(response.content)
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
# # df = pd.DataFrame(columns=["paragraph"])
|
241 |
+
# # df = df.append({"paragraph": input_paragraph}, ignore_index=True)
|
242 |
+
|
243 |
+
# df = pd.DataFrame([input_paragraph], columns=["paragraph"])
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
# # Variable to control number of words to retrieve
|
248 |
+
# num_words = 500
|
249 |
+
|
250 |
+
# # Retrieving only the first num_words words of the paragraph
|
251 |
+
# input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
|
252 |
+
|
253 |
+
|
254 |
+
# # Extracting features
|
255 |
+
# def extract_features_AI_vs_AI_RandomForest_88_Samples(text):
|
256 |
+
# words = word_tokenize(text)
|
257 |
+
# sentences = sent_tokenize(text)
|
258 |
+
|
259 |
+
# avg_word_length = sum(len(word) for word in words if word.isalpha()) / len(words)
|
260 |
+
# avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
|
261 |
+
# punctuation_count = len([char for char in text if char in '.,;:?!'])
|
262 |
+
# stopword_count = len([word for word in words if word in stopwords.words('english')])
|
263 |
+
|
264 |
+
# lemmatizer = WordNetLemmatizer()
|
265 |
+
# lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
|
266 |
+
|
267 |
+
# named_entity_count = len([chunk for chunk in ne_chunk(pos_tag(words)) if isinstance(chunk, Tree)])
|
268 |
+
|
269 |
+
# tagged_words = nltk.pos_tag(words)
|
270 |
+
# pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
|
271 |
+
# pos_features = {
|
272 |
+
# 'pos_IN': pos_counts['IN'],
|
273 |
+
# 'pos_DT': pos_counts['DT'],
|
274 |
+
# 'pos_NN': pos_counts['NN'],
|
275 |
+
# 'pos_,': pos_counts[','],
|
276 |
+
# 'pos_VBZ': pos_counts['VBZ'],
|
277 |
+
# 'pos_WDT': pos_counts['WDT'],
|
278 |
+
# 'pos_TO': pos_counts['TO'],
|
279 |
+
# 'pos_VB': pos_counts['VB'],
|
280 |
+
# 'pos_VBG': pos_counts['VBG'],
|
281 |
+
# 'pos_.': pos_counts['.'],
|
282 |
+
# 'pos_JJ': pos_counts['JJ'],
|
283 |
+
# 'pos_NNS': pos_counts['NNS'],
|
284 |
+
# 'pos_RB': pos_counts['RB'],
|
285 |
+
# 'pos_CC': pos_counts['CC'],
|
286 |
+
# 'pos_VBN': pos_counts['VBN'],
|
287 |
+
# }
|
288 |
+
|
289 |
+
# features = {
|
290 |
+
# 'avg_word_length': avg_word_length,
|
291 |
+
# 'avg_sent_length': avg_sent_length,
|
292 |
+
# 'punctuation_count': punctuation_count,
|
293 |
+
# 'stopword_count': stopword_count,
|
294 |
+
# 'lemma_count': lemma_count,
|
295 |
+
# 'named_entity_count': named_entity_count,
|
296 |
+
# }
|
297 |
+
# features.update(pos_features)
|
298 |
+
|
299 |
+
# return pd.Series(features)
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
# # Extracting features for AI_vs_AI_Ridge_2000_Samples
|
304 |
+
# def extract_features_AI_vs_AI_Ridge_2000_Samples(text):
|
305 |
+
|
306 |
+
# words = word_tokenize(text)
|
307 |
+
# sentences = sent_tokenize(text)
|
308 |
+
|
309 |
+
# avg_word_length = sum(len(word) for word in words if word.isalpha()) / len(words)
|
310 |
+
# avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
|
311 |
+
# punctuation_count = len([char for char in text if char in '.,;:?!'])
|
312 |
+
# stopword_count = len([word for word in words if word in stopwords.words('english')])
|
313 |
+
|
314 |
+
# lemmatizer = WordNetLemmatizer()
|
315 |
+
# lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
|
316 |
+
|
317 |
+
# named_entity_count = len([chunk for chunk in ne_chunk(pos_tag(words)) if isinstance(chunk, Tree)])
|
318 |
+
|
319 |
+
# tagged_words = nltk.pos_tag(words)
|
320 |
+
# pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
|
321 |
+
# pos_features = {
|
322 |
+
# 'pos_IN': pos_counts['IN'],
|
323 |
+
# 'pos_DT': pos_counts['DT'],
|
324 |
+
# 'pos_NN': pos_counts['NN'],
|
325 |
+
# 'pos_,': pos_counts[','],
|
326 |
+
# 'pos_VBZ': pos_counts['VBZ'],
|
327 |
+
# 'pos_WDT': pos_counts['WDT'],
|
328 |
+
# 'pos_TO': pos_counts['TO'],
|
329 |
+
# 'pos_VB': pos_counts['VB'],
|
330 |
+
# 'pos_PRP': pos_counts['PRP'],
|
331 |
+
# 'pos_VBP': pos_counts['VBP'],
|
332 |
+
# 'pos_VBG': pos_counts['VBG'],
|
333 |
+
# 'pos_.': pos_counts['.'],
|
334 |
+
# 'pos_JJ': pos_counts['JJ'],
|
335 |
+
# 'pos_NNS': pos_counts['NNS'],
|
336 |
+
# 'pos_RB': pos_counts['RB'],
|
337 |
+
# 'pos_PRP$': pos_counts['PRP$'],
|
338 |
+
# 'pos_CC': pos_counts['CC'],
|
339 |
+
# 'pos_MD': pos_counts['MD'],
|
340 |
+
# 'pos_VBN': pos_counts['VBN'],
|
341 |
+
# 'pos_NNP': pos_counts['NNP'],
|
342 |
+
# }
|
343 |
+
|
344 |
+
# features = {
|
345 |
+
# 'avg_word_length': avg_word_length,
|
346 |
+
# 'avg_sent_length': avg_sent_length,
|
347 |
+
# 'punctuation_count': punctuation_count,
|
348 |
+
# 'stopword_count': stopword_count,
|
349 |
+
# 'lemma_count': lemma_count,
|
350 |
+
# 'named_entity_count': named_entity_count,
|
351 |
+
# }
|
352 |
+
# # features.update(pos_features)
|
353 |
+
# features = pd.concat([features, pd.DataFrame(pos_features, index=[0])], axis=1)
|
354 |
+
|
355 |
+
# return pd.Series(features)
|
356 |
+
|
357 |
+
# # Function from Code(2)
|
358 |
+
# def add_vectorized_features(df):
|
359 |
+
# vectorizer = CountVectorizer()
|
360 |
+
# tfidf_vectorizer = TfidfVectorizer()
|
361 |
+
# X_bow = vectorizer.fit_transform(df['paragraph'])
|
362 |
+
# X_tfidf = tfidf_vectorizer.fit_transform(df['paragraph'])
|
363 |
+
# df_bow = pd.DataFrame(X_bow.toarray(), columns=vectorizer.get_feature_names_out())
|
364 |
+
# df_tfidf = pd.DataFrame(X_tfidf.toarray(), columns=tfidf_vectorizer.get_feature_names_out())
|
365 |
+
# df = pd.concat([df, df_bow, df_tfidf], axis=1)
|
366 |
+
# return df
|
367 |
+
|
368 |
+
|
369 |
+
# # Function define AI_vs_AI_RandomForest_88_Samples
|
370 |
+
# def AI_vs_AI_RandomForest_88_Samples(df):
|
371 |
|
372 |
|
373 |
|
374 |
|
375 |
+
# input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
|
376 |
+
# # try:
|
377 |
+
# # predicted_llm = clf_loaded.predict(input_features)
|
378 |
+
# # st.write(f"Predicted LLM: {predicted_llm[0]}")
|
379 |
+
# # predicted_proba = clf_loaded.predict_proba(input_features)
|
380 |
+
# # except Exception as e:
|
381 |
+
# # st.write(f"An error occurred: {str(e)}")
|
382 |
|
383 |
+
# # labels = clf_loaded.classes_
|
384 |
|
385 |
+
# # # Create a mapping from old labels to new labels
|
386 |
+
# # label_mapping = {1: 'gpt3', 2: 'gpt4', 3: 'googlebard', 4: 'huggingface'}
|
387 |
|
388 |
+
# # # Apply the mapping to the labels
|
389 |
+
# # new_labels = [label_mapping[label] for label in labels]
|
390 |
|
391 |
+
# # # Create a dictionary that maps new labels to probabilities
|
392 |
+
# # prob_dict = {k: v for k, v in zip(new_labels, probabilities)}
|
393 |
|
394 |
+
# # # Convert probabilities to percentages and sort the dictionary in descending order
|
395 |
+
# # prob_dict = {k: f'{v*100:.2f}%' for k, v in sorted(prob_dict.items(), key=lambda item: item[1], reverse=True)}
|
396 |
|
397 |
+
# # # Print the dictionary
|
398 |
+
# # #st.write(prob_dict)
|
399 |
|
400 |
+
# # # Create a progress bar and a bar chart for each LLM
|
401 |
+
# # for llm, prob in prob_dict.items():
|
402 |
+
# # st.write(llm + ': ' + prob)
|
403 |
+
# # st.progress(float(prob.strip('%'))/100)
|
404 |
+
# return
|
405 |
|
406 |
|
407 |
+
# def AI_vs_AI_Ridge_2000_Samples(df):
|
408 |
|
409 |
+
# # At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
|
410 |
+
# with open('AI_vs_AI_Ridge_2000_Samples.pkl', 'rb') as file2:
|
411 |
+
# clf_loaded = pickle.load(file2)
|
412 |
|
413 |
|
414 |
+
# input_features = df['paragraph'].apply(extract_features_AI_vs_AI_Ridge_2000_Samples)
|
415 |
|
416 |
+
# # Here, input_features is a DataFrame, not a Series
|
417 |
+
# input_features = pd.concat(input_features.values, ignore_index=True)
|
418 |
|
419 |
+
# # Add new vectorized features
|
420 |
+
# df = add_vectorized_features(df)
|
421 |
|
422 |
+
# # Concatenate input_features and df along columns
|
423 |
+
# final_features = pd.concat([input_features, df], axis=1)
|
424 |
|
425 |
+
# predicted_llm = clf_loaded.predict(final_features)
|
426 |
+
# st.write(f"Predicted LLM: {predicted_llm[0]}")
|
427 |
|
428 |
+
# return
|
429 |
|
430 |
|
431 |
|
432 |
+
# # Check if the file exists
|
433 |
+
# if not os.path.isfile('AI_vs_AI_RandomForest_88_Samples.pkl'):
|
434 |
+
# # Download the zip file if it doesn't exist
|
435 |
+
# url = 'https://jaifar.net/AI_vs_AI_RandomForest_88_Samples.pkl'
|
436 |
+
# headers = {
|
437 |
+
# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
438 |
+
# }
|
439 |
|
440 |
+
# response = requests.get(url, headers=headers)
|
441 |
|
442 |
+
# # Save the file
|
443 |
+
# try:
|
444 |
+
# with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'wb') as file:
|
445 |
+
# file.write(response.content)
|
446 |
+
# except Exception as e:
|
447 |
+
# st.write(f"An error occurred while writing AI_vs_AI_RandomForest_88_Samples.pkl: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
448 |
|
449 |
+
# try:
|
450 |
+
# with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'rb') as file:
|
451 |
+
# clf_loaded = pickle.load(file)
|
452 |
+
# except Exception as e:
|
453 |
+
# st.write(f"An error occurred while loading AI_vs_AI_RandomForest_88_Samples.pkl: {str(e)}")
|
454 |
+
|
455 |
+
# # Creates a button
|
456 |
+
# press_me_button = st.button("Which Model Used?")
|
457 |
+
|
458 |
+
# if press_me_button:
|
459 |
|
460 |
+
# input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
|
461 |
|
462 |
+
# try:
|
463 |
+
# predicted_llm = clf_loaded.predict(input_features)
|
464 |
+
# st.write(f"Predicted LLM: {predicted_llm[0]}")
|
465 |
+
# predicted_proba = clf_loaded.predict_proba(input_features)
|
466 |
+
# except Exception as e:
|
467 |
+
# st.write(f"An error occurred: {str(e)}")
|
468 |
+
|
469 |
+
# # # Use the selected option to control the flow of your application
|
470 |
+
# # if selected_option == "AI vs AI - RandomForest - 88 Samples":
|
471 |
+
# # AI_vs_AI_RandomForest_88_Samples(df)
|
472 |
+
|
473 |
+
# # elif selected_option == "AI vs AI - Ridge - 2000 Samples":
|
474 |
+
# # AI_vs_AI_Ridge_2000_Samples(df)
|
475 |
+
|
476 |
+
# # elif selected_option == "AI vs Human":
|
477 |
+
# # st.write("You selected AI vs Human!")
|
478 |
|
479 |
|
480 |
|