Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -20,23 +20,7 @@ headers = {
|
|
20 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
21 |
}
|
22 |
|
23 |
-
#################### Load the banner image ##########
|
24 |
-
# Fetch the image from the URL
|
25 |
-
banner_image_request = requests.get("https://jaifar.net/ADS/banner.jpg", headers=headers)
|
26 |
|
27 |
-
# Save the downloaded content
|
28 |
-
banner_image_path = "banner.jpg"
|
29 |
-
with open(banner_image_path, "wb") as f:
|
30 |
-
f.write(banner_image_request.content)
|
31 |
-
|
32 |
-
|
33 |
-
# Open the image
|
34 |
-
banner_image = Image.open(banner_image_path)
|
35 |
-
|
36 |
-
# Display the image using streamlit
|
37 |
-
st.image(banner_image, caption='', use_column_width=True)
|
38 |
-
|
39 |
-
################ end loading banner image ##################
|
40 |
|
41 |
def get_author_display_name(predicted_author, ridge_prediction, extra_trees_prediction):
|
42 |
author_map = {
|
@@ -94,7 +78,7 @@ if not os.path.exists('my_authorship_model'):
|
|
94 |
st.write(f"Failed to download or extract the model: {e}")
|
95 |
exit(1)
|
96 |
else:
|
97 |
-
st.write("
|
98 |
|
99 |
|
100 |
# Download the required files
|
@@ -380,28 +364,19 @@ if press_me_button:
|
|
380 |
|
381 |
|
382 |
# Using expander to make FAQ sections
|
383 |
-
st.subheader("
|
384 |
|
385 |
# Small Description
|
386 |
with st.expander("What is this project about?"):
|
387 |
st.write("""
|
388 |
-
This
|
389 |
-
|
390 |
-
a human or a specific Large Language Model (LLM) like ChatGPT-3, ChatGPT-4, Google Bard, or HuggingChat.
|
391 |
-
For inquiries, contact [[email protected]](mailto:[email protected]).
|
392 |
-
Supervised by Dr. Mohamed Bader.
|
393 |
-
""")
|
394 |
|
395 |
-
# Aim and Objectives
|
396 |
-
with st.expander("Aim and Objectives"):
|
397 |
-
st.write("""
|
398 |
-
The project aims to help staff at the University of Portsmouth distinguish between
|
399 |
-
student-written artifacts and those generated by LLMs. It focuses on text feature extraction, model testing,
|
400 |
-
and implementing a user-friendly dashboard among other objectives.
|
401 |
""")
|
|
|
402 |
|
403 |
# System Details
|
404 |
-
with st.expander("How does the
|
405 |
st.write("""
|
406 |
The system is trained using deep learning model on a dataset of 140,546 paragraphs, varying in length from 10 to 1090 words.
|
407 |
It achieves an accuracy of 0.9964 with a validation loss of 0.094.
|
@@ -422,15 +397,5 @@ with st.expander("How does the system work?"):
|
|
422 |
# Display the image using streamlit
|
423 |
st.image(accuracy_image, caption='Best Accuracy', use_column_width=True)
|
424 |
|
425 |
-
# Data Storage Information
|
426 |
-
with st.expander("Does the system store my data?"):
|
427 |
-
st.write("No, the system does not collect or store any user input data.")
|
428 |
-
|
429 |
-
# Use-case Limitation
|
430 |
-
with st.expander("Can I use this as evidence?"):
|
431 |
-
st.write("""
|
432 |
-
No, this system is a Proof of Concept (POC) and should not be used as evidence against students or similar entities.
|
433 |
-
""")
|
434 |
-
|
435 |
|
436 |
|
|
|
20 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
21 |
}
|
22 |
|
|
|
|
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def get_author_display_name(predicted_author, ridge_prediction, extra_trees_prediction):
|
26 |
author_map = {
|
|
|
78 |
st.write(f"Failed to download or extract the model: {e}")
|
79 |
exit(1)
|
80 |
else:
|
81 |
+
st.write("AI Text Detection")
|
82 |
|
83 |
|
84 |
# Download the required files
|
|
|
364 |
|
365 |
|
366 |
# Using expander to make FAQ sections
|
367 |
+
st.subheader("More about AI Text Detector Project :")
|
368 |
|
369 |
# Small Description
|
370 |
with st.expander("What is this project about?"):
|
371 |
st.write("""
|
372 |
+
This AI Text Detector tells whether a text is written by a Human or a specific Large Language Model (LLM) like ChatGPT-3, ChatGPT-4, Google Bard, or HuggingChat.
|
373 |
+
Ridge, Extra trees and CNN are the machine learning algorithms have been used to create this AI Text Detector.
|
|
|
|
|
|
|
|
|
374 |
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
""")
|
376 |
+
|
377 |
|
378 |
# System Details
|
379 |
+
with st.expander("How does the AI Text Detector work?"):
|
380 |
st.write("""
|
381 |
The system is trained using deep learning model on a dataset of 140,546 paragraphs, varying in length from 10 to 1090 words.
|
382 |
It achieves an accuracy of 0.9964 with a validation loss of 0.094.
|
|
|
397 |
# Display the image using streamlit
|
398 |
st.image(accuracy_image, caption='Best Accuracy', use_column_width=True)
|
399 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
|