Spaces:
Running
Running
jaifar530
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -234,8 +234,7 @@ def predict_author(new_text, model, tokenizer, label_encoder):
|
|
234 |
return predicted_label, author_probabilities
|
235 |
|
236 |
new_text = st.text_area("Input Your Text Here:")
|
237 |
-
|
238 |
-
st.write(word_count)
|
239 |
|
240 |
# Creates a button named 'Press me'
|
241 |
press_me_button = st.button("Human or Robot?")
|
@@ -243,9 +242,9 @@ press_me_button = st.button("Human or Robot?")
|
|
243 |
if press_me_button:
|
244 |
|
245 |
########## ML
|
246 |
-
|
247 |
word_count = len(re.findall(r'\w+', new_text))
|
248 |
-
st.write(word_count)
|
249 |
|
250 |
# Choose the appropriate model based on word count
|
251 |
if 10 <= word_count <= 34:
|
@@ -303,18 +302,10 @@ if press_me_button:
|
|
303 |
ridge_prediction = ridge_model.predict(user_input_transformed)
|
304 |
extra_trees_prediction = extra_trees_model.predict(user_input_transformed)
|
305 |
|
306 |
-
if ridge_prediction == extra_trees_prediction:
|
307 |
-
st.write(f"Same pridiction (Ridge & ExtraTree): {ridge_prediction[0]}")
|
308 |
-
else:
|
309 |
-
st.write("Different predictions:")
|
310 |
-
st.write(f"Ridge says: {ridge_prediction[0]}")
|
311 |
-
st.write(f"Extra Trees says: {extra_trees_prediction[0]}")
|
312 |
-
|
313 |
-
|
314 |
########## DL
|
315 |
predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder)
|
316 |
sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True)
|
317 |
-
|
318 |
author_map = {
|
319 |
"googlebard": "Google Bard",
|
320 |
"gpt3": "ChatGPT-3",
|
@@ -322,17 +313,40 @@ if press_me_button:
|
|
322 |
"huggingface": "HuggingChat",
|
323 |
"human": "Human-Written"
|
324 |
}
|
|
|
|
|
|
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
# Using expander to make FAQ sections
|
338 |
st.subheader("Frequently Asked Questions (FAQ)")
|
|
|
234 |
return predicted_label, author_probabilities
|
235 |
|
236 |
new_text = st.text_area("Input Your Text Here:")
|
237 |
+
|
|
|
238 |
|
239 |
# Creates a button named 'Press me'
|
240 |
press_me_button = st.button("Human or Robot?")
|
|
|
242 |
if press_me_button:
|
243 |
|
244 |
########## ML
|
245 |
+
|
246 |
word_count = len(re.findall(r'\w+', new_text))
|
247 |
+
st.write(f"Words Count: {word_count}")
|
248 |
|
249 |
# Choose the appropriate model based on word count
|
250 |
if 10 <= word_count <= 34:
|
|
|
302 |
ridge_prediction = ridge_model.predict(user_input_transformed)
|
303 |
extra_trees_prediction = extra_trees_model.predict(user_input_transformed)
|
304 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
########## DL
|
306 |
predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder)
|
307 |
sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True)
|
308 |
+
|
309 |
author_map = {
|
310 |
"googlebard": "Google Bard",
|
311 |
"gpt3": "ChatGPT-3",
|
|
|
313 |
"huggingface": "HuggingChat",
|
314 |
"human": "Human-Written"
|
315 |
}
|
316 |
+
cnn_predicted_author_diplay_name = author_map.get(predicted_author, predicted_author)
|
317 |
+
ridge_predicted_author_diplay_name = author_map.get(ridge_prediction[0], ridge_prediction[0])
|
318 |
+
extra_trees_predicted_author_diplay_name = author_map.get(extra_trees_prediction[0], extra_trees_prediction[0])
|
319 |
|
320 |
+
if ridge_prediction == extra_trees_prediction == predicted_author:
|
321 |
+
st.write(f"The text is most likely written by: {ridge_predicted_author_diplay_name}")
|
322 |
+
|
323 |
+
elif ridge_prediction == extra_trees_prediction:
|
324 |
+
st.write(f"The text is most likely written by: {ridge_predicted_author_diplay_name}")
|
325 |
+
|
326 |
+
elif extra_trees_prediction == predicted_author:
|
327 |
+
st.write(f"The text is most likely written by: {extra_trees_predicted_author_diplay_name}")
|
328 |
+
|
329 |
+
elif ridge_prediction == predicted_author:
|
330 |
+
st.write(f"The text is most likely written by: {ridge_predicted_author_diplay_name}")
|
331 |
+
|
332 |
+
else:
|
333 |
+
st.write("Difficult to Pridict this text, it might fill into one of the below:")
|
334 |
+
st.write(cnn_predicted_author_diplay_name)
|
335 |
+
st.write(ridge_predicted_author_diplay_name)
|
336 |
+
st.write(extra_trees_predicted_author_diplay_name)
|
337 |
+
|
338 |
+
# with st.expander("What is this project about?"):
|
339 |
+
# st.write("""
|
340 |
+
# This project is part of an MSc in Data Analytics at the University of Portsmouth.
|
341 |
+
# Developed by Jaifar Al Shizawi, it aims to identify whether a text is written by a human or a specific Large Language Model (LLM) like ChatGPT-3, ChatGPT-4, Google Bard, or HuggingChat.
|
342 |
+
# For inquiries, contact [[email protected]](mailto:[email protected]).
|
343 |
+
# Supervised by Dr. Mohamed Bader.
|
344 |
+
# """)
|
345 |
+
|
346 |
+
# for author, prob in sorted_probabilities:
|
347 |
+
# display_name = author_map.get(author, author) # Retrieve the display name, fall back to original if not found
|
348 |
+
# st.write(f"{display_name}: {prob * 100:.2f}%")
|
349 |
+
# st.progress(float(prob))
|
350 |
|
351 |
# Using expander to make FAQ sections
|
352 |
st.subheader("Frequently Asked Questions (FAQ)")
|