Spaces:
Sleeping
Sleeping
jaifar530
commited on
app.py
CHANGED
@@ -219,38 +219,16 @@ def add_vectorized_features(df):
|
|
219 |
# Function define AI_vs_AI_RandomForest_88_Samples
|
220 |
def AI_vs_AI_RandomForest_88_Samples(df):
|
221 |
|
222 |
-
# Check if the file exists
|
223 |
-
if not os.path.isfile('AI_vs_AI_RandomForest_88_Samples.pkl'):
|
224 |
-
# Download the zip file if it doesn't exist
|
225 |
-
url = 'https://jaifar.net/AI_vs_AI_RandomForest_88_Samples.pkl'
|
226 |
-
headers = {
|
227 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
228 |
-
}
|
229 |
|
230 |
-
response = requests.get(url, headers=headers)
|
231 |
|
232 |
-
# Save the file
|
233 |
-
try:
|
234 |
-
with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'wb') as file:
|
235 |
-
file.write(response.content)
|
236 |
-
except Exception as e:
|
237 |
-
st.write(f"An error occurred while writing AI_vs_AI_RandomForest_88_Samples.pkl: {str(e)}")
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
|
248 |
-
try:
|
249 |
-
predicted_llm = clf_loaded.predict(input_features)
|
250 |
-
st.write(f"Predicted LLM: {predicted_llm[0]}")
|
251 |
-
predicted_proba = clf_loaded.predict_proba(input_features)
|
252 |
-
except Exception as e:
|
253 |
-
st.write(f"An error occurred: {str(e)}")
|
254 |
|
255 |
# labels = clf_loaded.classes_
|
256 |
|
@@ -299,20 +277,54 @@ def AI_vs_AI_Ridge_2000_Samples(df):
|
|
299 |
return
|
300 |
|
301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
# Creates a button
|
303 |
press_me_button = st.button("Which Model Used?")
|
304 |
|
305 |
if press_me_button:
|
|
|
|
|
306 |
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
-
elif selected_option == "AI vs AI - Ridge - 2000 Samples":
|
312 |
-
|
313 |
|
314 |
-
elif selected_option == "AI vs Human":
|
315 |
-
|
316 |
|
317 |
|
318 |
|
|
|
219 |
# Function define AI_vs_AI_RandomForest_88_Samples
|
220 |
def AI_vs_AI_RandomForest_88_Samples(df):
|
221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
|
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
+
# input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
|
226 |
+
# try:
|
227 |
+
# predicted_llm = clf_loaded.predict(input_features)
|
228 |
+
# st.write(f"Predicted LLM: {predicted_llm[0]}")
|
229 |
+
# predicted_proba = clf_loaded.predict_proba(input_features)
|
230 |
+
# except Exception as e:
|
231 |
+
# st.write(f"An error occurred: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
# labels = clf_loaded.classes_
|
234 |
|
|
|
277 |
return
|
278 |
|
279 |
|
280 |
+
|
281 |
+
# Check if the file exists
|
282 |
+
if not os.path.isfile('AI_vs_AI_RandomForest_88_Samples.pkl'):
|
283 |
+
# Download the zip file if it doesn't exist
|
284 |
+
url = 'https://jaifar.net/AI_vs_AI_RandomForest_88_Samples.pkl'
|
285 |
+
headers = {
|
286 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
287 |
+
}
|
288 |
+
|
289 |
+
response = requests.get(url, headers=headers)
|
290 |
+
|
291 |
+
# Save the file
|
292 |
+
try:
|
293 |
+
with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'wb') as file:
|
294 |
+
file.write(response.content)
|
295 |
+
except Exception as e:
|
296 |
+
st.write(f"An error occurred while writing AI_vs_AI_RandomForest_88_Samples.pkl: {str(e)}")
|
297 |
+
|
298 |
+
try:
|
299 |
+
with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'rb') as file:
|
300 |
+
clf_loaded = pickle.load(file)
|
301 |
+
except Exception as e:
|
302 |
+
st.write(f"An error occurred while loading AI_vs_AI_RandomForest_88_Samples.pkl: {str(e)}")
|
303 |
+
return # This will exit the function
|
304 |
+
|
305 |
# Creates a button
|
306 |
press_me_button = st.button("Which Model Used?")
|
307 |
|
308 |
if press_me_button:
|
309 |
+
|
310 |
+
input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
|
311 |
|
312 |
+
try:
|
313 |
+
predicted_llm = clf_loaded.predict(input_features)
|
314 |
+
st.write(f"Predicted LLM: {predicted_llm[0]}")
|
315 |
+
predicted_proba = clf_loaded.predict_proba(input_features)
|
316 |
+
except Exception as e:
|
317 |
+
st.write(f"An error occurred: {str(e)}")
|
318 |
+
|
319 |
+
# # Use the selected option to control the flow of your application
|
320 |
+
# if selected_option == "AI vs AI - RandomForest - 88 Samples":
|
321 |
+
# AI_vs_AI_RandomForest_88_Samples(df)
|
322 |
|
323 |
+
# elif selected_option == "AI vs AI - Ridge - 2000 Samples":
|
324 |
+
# AI_vs_AI_Ridge_2000_Samples(df)
|
325 |
|
326 |
+
# elif selected_option == "AI vs Human":
|
327 |
+
# st.write("You selected AI vs Human!")
|
328 |
|
329 |
|
330 |
|