jaifar530 commited on
Commit
a1276b6
·
unverified ·
1 Parent(s): 0717381
Files changed (1) hide show
  1. app.py +48 -36
app.py CHANGED
@@ -219,38 +219,16 @@ def add_vectorized_features(df):
219
  # Function define AI_vs_AI_RandomForest_88_Samples
220
  def AI_vs_AI_RandomForest_88_Samples(df):
221
 
222
- # Check if the file exists
223
- if not os.path.isfile('AI_vs_AI_RandomForest_88_Samples.pkl'):
224
- # Download the zip file if it doesn't exist
225
- url = 'https://jaifar.net/AI_vs_AI_RandomForest_88_Samples.pkl'
226
- headers = {
227
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
228
- }
229
 
230
- response = requests.get(url, headers=headers)
231
 
232
- # Save the file
233
- try:
234
- with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'wb') as file:
235
- file.write(response.content)
236
- except Exception as e:
237
- st.write(f"An error occurred while writing AI_vs_AI_RandomForest_88_Samples.pkl: {str(e)}")
238
 
239
- try:
240
- with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'rb') as file:
241
- clf_loaded = pickle.load(file)
242
- except Exception as e:
243
- st.write(f"An error occurred while loading AI_vs_AI_RandomForest_88_Samples.pkl: {str(e)}")
244
- return # This will exit the function
245
-
246
-
247
- input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
248
- try:
249
- predicted_llm = clf_loaded.predict(input_features)
250
- st.write(f"Predicted LLM: {predicted_llm[0]}")
251
- predicted_proba = clf_loaded.predict_proba(input_features)
252
- except Exception as e:
253
- st.write(f"An error occurred: {str(e)}")
254
 
255
  # labels = clf_loaded.classes_
256
 
@@ -299,20 +277,54 @@ def AI_vs_AI_Ridge_2000_Samples(df):
299
  return
300
 
301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
  # Creates a button
303
  press_me_button = st.button("Which Model Used?")
304
 
305
  if press_me_button:
 
 
306
 
307
- # Use the selected option to control the flow of your application
308
- if selected_option == "AI vs AI - RandomForest - 88 Samples":
309
- AI_vs_AI_RandomForest_88_Samples(df)
 
 
 
 
 
 
 
310
 
311
- elif selected_option == "AI vs AI - Ridge - 2000 Samples":
312
- AI_vs_AI_Ridge_2000_Samples(df)
313
 
314
- elif selected_option == "AI vs Human":
315
- st.write("You selected AI vs Human!")
316
 
317
 
318
 
 
219
  # Function define AI_vs_AI_RandomForest_88_Samples
220
  def AI_vs_AI_RandomForest_88_Samples(df):
221
 
 
 
 
 
 
 
 
222
 
 
223
 
 
 
 
 
 
 
224
 
225
+ # input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
226
+ # try:
227
+ # predicted_llm = clf_loaded.predict(input_features)
228
+ # st.write(f"Predicted LLM: {predicted_llm[0]}")
229
+ # predicted_proba = clf_loaded.predict_proba(input_features)
230
+ # except Exception as e:
231
+ # st.write(f"An error occurred: {str(e)}")
 
 
 
 
 
 
 
 
232
 
233
  # labels = clf_loaded.classes_
234
 
 
277
  return
278
 
279
 
280
+
281
+ # Check if the file exists
282
+ if not os.path.isfile('AI_vs_AI_RandomForest_88_Samples.pkl'):
283
+ # Download the zip file if it doesn't exist
284
+ url = 'https://jaifar.net/AI_vs_AI_RandomForest_88_Samples.pkl'
285
+ headers = {
286
+ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
287
+ }
288
+
289
+ response = requests.get(url, headers=headers)
290
+
291
+ # Save the file
292
+ try:
293
+ with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'wb') as file:
294
+ file.write(response.content)
295
+ except Exception as e:
296
+ st.write(f"An error occurred while writing AI_vs_AI_RandomForest_88_Samples.pkl: {str(e)}")
297
+
298
+ try:
299
+ with open('AI_vs_AI_RandomForest_88_Samples.pkl', 'rb') as file:
300
+ clf_loaded = pickle.load(file)
301
+ except Exception as e:
302
+ st.write(f"An error occurred while loading AI_vs_AI_RandomForest_88_Samples.pkl: {str(e)}")
303
+ return # This will exit the function
304
+
305
  # Creates a button
306
  press_me_button = st.button("Which Model Used?")
307
 
308
  if press_me_button:
309
+
310
+ input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
311
 
312
+ try:
313
+ predicted_llm = clf_loaded.predict(input_features)
314
+ st.write(f"Predicted LLM: {predicted_llm[0]}")
315
+ predicted_proba = clf_loaded.predict_proba(input_features)
316
+ except Exception as e:
317
+ st.write(f"An error occurred: {str(e)}")
318
+
319
+ # # Use the selected option to control the flow of your application
320
+ # if selected_option == "AI vs AI - RandomForest - 88 Samples":
321
+ # AI_vs_AI_RandomForest_88_Samples(df)
322
 
323
+ # elif selected_option == "AI vs AI - Ridge - 2000 Samples":
324
+ # AI_vs_AI_Ridge_2000_Samples(df)
325
 
326
+ # elif selected_option == "AI vs Human":
327
+ # st.write("You selected AI vs Human!")
328
 
329
 
330