Spaces:
Runtime error
Runtime error
jaifar530
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,133 +1,133 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
st.write("Test system if working")
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
#
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
#
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
#
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
#
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
#
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
#
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
#
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
#
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
#
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
#
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
st.write("Test system if working")
|
| 3 |
|
| 4 |
+
import os
|
| 5 |
+
import requests
|
| 6 |
+
import subprocess # Import the subprocess module
|
| 7 |
+
from keras.models import load_model
|
| 8 |
+
from keras.preprocessing.text import Tokenizer
|
| 9 |
+
from keras.preprocessing.sequence import pad_sequences
|
| 10 |
+
from sklearn.preprocessing import LabelEncoder
|
| 11 |
+
import pickle
|
| 12 |
+
import numpy as np
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# Custom headers for the HTTP request
|
| 16 |
+
headers = {
|
| 17 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
# Debugging: Print current working directory initially
|
| 21 |
+
st.write(f"Initial Current Working Directory: {os.getcwd()}")
|
| 22 |
+
|
| 23 |
+
# Check if the model folder exists
|
| 24 |
+
zip_file_path = "my_authorship_model_zip.zip"
|
| 25 |
+
if not os.path.exists('my_authorship_model'):
|
| 26 |
+
try:
|
| 27 |
+
# Download the model
|
| 28 |
+
model_url = 'https://jaifar.net/ADS/my_authorship_model_zip.zip'
|
| 29 |
+
r = requests.get(model_url, headers=headers)
|
| 30 |
+
r.raise_for_status()
|
| 31 |
+
|
| 32 |
+
# Debugging: Check if download is successful by examining content length
|
| 33 |
+
st.write(f"Downloaded model size: {len(r.content)} bytes")
|
| 34 |
+
|
| 35 |
+
# Save the downloaded content
|
| 36 |
+
with open(zip_file_path, "wb") as f:
|
| 37 |
+
f.write(r.content)
|
| 38 |
+
|
| 39 |
+
# Debugging: Verify that the zip file exists
|
| 40 |
+
if os.path.exists(zip_file_path):
|
| 41 |
+
st.write("Zip file exists")
|
| 42 |
+
|
| 43 |
+
# Debugging: List contents of the zip file using unzip
|
| 44 |
+
subprocess.run(['unzip', '-l', zip_file_path])
|
| 45 |
+
|
| 46 |
+
# Extract the model using unzip
|
| 47 |
+
unzip_result = subprocess.run(['unzip', '-o', zip_file_path, '-d', 'my_authorship_model'])
|
| 48 |
+
|
| 49 |
+
# Debugging: Check unzip exit code (0 means success)
|
| 50 |
+
if unzip_result.returncode == 0:
|
| 51 |
+
st.write("Model folder successfully extracted using unzip")
|
| 52 |
+
# Debugging: List the directory contents after extraction
|
| 53 |
+
st.write("Listing directory contents:")
|
| 54 |
+
st.write(os.listdir('.'))
|
| 55 |
+
else:
|
| 56 |
+
st.write("Model folder was not extracted successfully using unzip")
|
| 57 |
+
exit(1)
|
| 58 |
+
else:
|
| 59 |
+
st.write("Zip file does not exist")
|
| 60 |
+
exit(1)
|
| 61 |
+
except Exception as e:
|
| 62 |
+
st.write(f"Failed to download or extract the model: {e}")
|
| 63 |
+
exit(1)
|
| 64 |
+
else:
|
| 65 |
+
st.write("Model folder exists")
|
| 66 |
+
|
| 67 |
+
# Debugging: Print current working directory after extraction
|
| 68 |
+
st.write(f"Current Working Directory After Extraction: {os.getcwd()}")
|
| 69 |
+
|
| 70 |
+
# Debugging: Check if model folder contains required files
|
| 71 |
+
try:
|
| 72 |
+
model_files = os.listdir('my_authorship_model')
|
| 73 |
+
st.write(f"Files in model folder: {model_files}")
|
| 74 |
+
except Exception as e:
|
| 75 |
+
st.write(f"Could not list files in model folder: {e}")
|
| 76 |
+
|
| 77 |
+
# Download the required files
|
| 78 |
+
file_urls = {
|
| 79 |
+
'tokenizer.pkl': 'https://jaifar.net/ADS/tokenizer.pkl',
|
| 80 |
+
'label_encoder.pkl': 'https://jaifar.net/ADS/label_encoder.pkl'
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
for filename, url in file_urls.items():
|
| 84 |
+
try:
|
| 85 |
+
r = requests.get(url, headers=headers)
|
| 86 |
+
r.raise_for_status()
|
| 87 |
+
with open(filename, 'wb') as f:
|
| 88 |
+
f.write(r.content)
|
| 89 |
+
except Exception as e:
|
| 90 |
+
st.write(f"Failed to download {filename}: {e}")
|
| 91 |
+
exit(1)
|
| 92 |
+
|
| 93 |
+
# Load the saved model
|
| 94 |
+
loaded_model = load_model("my_authorship_model")
|
| 95 |
+
|
| 96 |
+
# Load the saved tokenizer and label encoder
|
| 97 |
+
with open('tokenizer.pkl', 'rb') as handle:
|
| 98 |
+
tokenizer = pickle.load(handle)
|
| 99 |
+
|
| 100 |
+
with open('label_encoder.pkl', 'rb') as handle:
|
| 101 |
+
label_encoder = pickle.load(handle)
|
| 102 |
+
|
| 103 |
+
max_length = 300 # As defined in the training code
|
| 104 |
+
|
| 105 |
+
# Function to predict author for new text
|
| 106 |
+
def predict_author(new_text, model, tokenizer, label_encoder):
|
| 107 |
+
sequence = tokenizer.texts_to_sequences([new_text])
|
| 108 |
+
padded_sequence = pad_sequences(sequence, maxlen=max_length, padding='post', truncating='post')
|
| 109 |
+
prediction = model.predict(padded_sequence)
|
| 110 |
+
|
| 111 |
+
predicted_label = label_encoder.inverse_transform([prediction.argmax()])[0]
|
| 112 |
+
probabilities = prediction[0]
|
| 113 |
+
author_probabilities = {}
|
| 114 |
+
for idx, prob in enumerate(probabilities):
|
| 115 |
+
author = label_encoder.inverse_transform([idx])[0]
|
| 116 |
+
author_probabilities[author] = prob
|
| 117 |
+
|
| 118 |
+
return predicted_label, author_probabilities
|
| 119 |
+
|
| 120 |
+
st.markdown("CNN : version: 1.2")
|
| 121 |
+
new_text = st.text_area("Input your text here")
|
| 122 |
+
|
| 123 |
+
# Creates a button named 'Press me'
|
| 124 |
+
press_me_button = st.button("Which Model Used?")
|
| 125 |
+
|
| 126 |
+
if press_me_button:
|
| 127 |
+
predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder)
|
| 128 |
+
sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True)
|
| 129 |
+
|
| 130 |
+
st.write(f"The text is most likely written by: {predicted_author}")
|
| 131 |
+
st.write("Probabilities for each author are (sorted):")
|
| 132 |
+
for author, prob in sorted_probabilities:
|
| 133 |
+
st.write(f"{author}: {prob * 100:.2f}%")
|