Spaces:
Runtime error
Runtime error
jaifar530
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -35,7 +35,7 @@ st.image(banner_image, caption='', use_column_width=True)
|
|
| 35 |
################ end loading banner image ##################
|
| 36 |
|
| 37 |
|
| 38 |
-
|
| 39 |
# Check if the model folder exists
|
| 40 |
zip_file_path = "my_authorship_model_zip.zip"
|
| 41 |
if not os.path.exists('my_authorship_model'):
|
|
@@ -76,8 +76,8 @@ if not os.path.exists('my_authorship_model'):
|
|
| 76 |
except Exception as e:
|
| 77 |
st.write(f"Failed to download or extract the model: {e}")
|
| 78 |
exit(1)
|
| 79 |
-
|
| 80 |
-
|
| 81 |
|
| 82 |
|
| 83 |
# Download the required files
|
|
@@ -87,15 +87,19 @@ file_urls = {
|
|
| 87 |
}
|
| 88 |
|
| 89 |
for filename, url in file_urls.items():
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
| 98 |
|
|
|
|
| 99 |
# Load the saved model
|
| 100 |
loaded_model = load_model("my_authorship_model")
|
| 101 |
|
|
@@ -108,6 +112,8 @@ with open('label_encoder.pkl', 'rb') as handle:
|
|
| 108 |
|
| 109 |
max_length = 300 # As defined in the training code
|
| 110 |
|
|
|
|
|
|
|
| 111 |
# Function to predict author for new text
|
| 112 |
def predict_author(new_text, model, tokenizer, label_encoder):
|
| 113 |
sequence = tokenizer.texts_to_sequences([new_text])
|
|
|
|
| 35 |
################ end loading banner image ##################
|
| 36 |
|
| 37 |
|
| 38 |
+
############# Download Or Check Files/folders exeistince ##############
|
| 39 |
# Check if the model folder exists
|
| 40 |
zip_file_path = "my_authorship_model_zip.zip"
|
| 41 |
if not os.path.exists('my_authorship_model'):
|
|
|
|
| 76 |
except Exception as e:
|
| 77 |
st.write(f"Failed to download or extract the model: {e}")
|
| 78 |
exit(1)
|
| 79 |
+
else:
|
| 80 |
+
st.write("Version: 2.1")
|
| 81 |
|
| 82 |
|
| 83 |
# Download the required files
|
|
|
|
| 87 |
}
|
| 88 |
|
| 89 |
for filename, url in file_urls.items():
|
| 90 |
+
if not os.path.exists(filename): # Check if the file doesn't exist
|
| 91 |
+
try:
|
| 92 |
+
r = requests.get(url, headers=headers)
|
| 93 |
+
r.raise_for_status()
|
| 94 |
+
with open(filename, 'wb') as f:
|
| 95 |
+
f.write(r.content)
|
| 96 |
+
except Exception as e:
|
| 97 |
+
st.write(f"Failed to download {filename}: {e}")
|
| 98 |
+
exit(1)
|
| 99 |
+
else:
|
| 100 |
+
st.write(f"File {filename} already exists. Skipping download.")
|
| 101 |
|
| 102 |
+
############### Load CNN Model ############
|
| 103 |
# Load the saved model
|
| 104 |
loaded_model = load_model("my_authorship_model")
|
| 105 |
|
|
|
|
| 112 |
|
| 113 |
max_length = 300 # As defined in the training code
|
| 114 |
|
| 115 |
+
############### End Load CNN Model ############
|
| 116 |
+
|
| 117 |
# Function to predict author for new text
|
| 118 |
def predict_author(new_text, model, tokenizer, label_encoder):
|
| 119 |
sequence = tokenizer.texts_to_sequences([new_text])
|