jaifar530 commited on
Commit
5f8821b
·
unverified ·
1 Parent(s): b8c6dcb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -229,7 +229,7 @@ with open('tokenizer.pkl', 'rb') as handle:
229
  with open('label_encoder.pkl', 'rb') as handle:
230
  label_encoder = pickle.load(handle)
231
 
232
- max_length = 300 # As defined in the training code
233
 
234
  ############### End Load CNN Model ############
235
 
@@ -256,7 +256,6 @@ press_me_button = st.button("Human or Robot?")
256
  if press_me_button:
257
 
258
  ########## ML
259
-
260
  word_count = len(re.findall(r'\w+', new_text))
261
  st.write(f"Words Count: {word_count}")
262
 
@@ -297,14 +296,14 @@ if press_me_button:
297
  with open(f"{file_prefix}_vectorizer.pkl", 'rb') as file:
298
  vectorizer = pickle.load(file)
299
 
300
- # Transform the input
301
  user_input_transformed = vectorizer.transform([new_text])
302
 
303
- # Make predictions
304
  ridge_prediction = ridge_model.predict(user_input_transformed)
305
  extra_trees_prediction = extra_trees_model.predict(user_input_transformed)
306
 
307
- ########## DL
308
  predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder)
309
  sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True)
310
 
@@ -332,7 +331,7 @@ if press_me_button:
332
  max_cnn_prob_name = sorted_probabilities[0][0]
333
  max_cnn_prob = float(sorted_probabilities[0][1])
334
 
335
- if word_count < 10 or word_count > 1081:
336
  st.info("For better prediction input texts between 10 and 1081", icon="ℹ️")
337
 
338
  elif word_count < 256:
 
229
  with open('label_encoder.pkl', 'rb') as handle:
230
  label_encoder = pickle.load(handle)
231
 
232
+ max_length = 300
233
 
234
  ############### End Load CNN Model ############
235
 
 
256
  if press_me_button:
257
 
258
  ########## ML
 
259
  word_count = len(re.findall(r'\w+', new_text))
260
  st.write(f"Words Count: {word_count}")
261
 
 
296
  with open(f"{file_prefix}_vectorizer.pkl", 'rb') as file:
297
  vectorizer = pickle.load(file)
298
 
299
+ # ML Vectorizing the input
300
  user_input_transformed = vectorizer.transform([new_text])
301
 
302
+ # ML predictions
303
  ridge_prediction = ridge_model.predict(user_input_transformed)
304
  extra_trees_prediction = extra_trees_model.predict(user_input_transformed)
305
 
306
+ # CNN prediction + Vectorizing the input
307
  predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder)
308
  sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True)
309
 
 
331
  max_cnn_prob_name = sorted_probabilities[0][0]
332
  max_cnn_prob = float(sorted_probabilities[0][1])
333
 
334
+ if word_count < 10.0 or word_count > 1081.0:
335
  st.info("For better prediction input texts between 10 and 1081", icon="ℹ️")
336
 
337
  elif word_count < 256: