jaifar530
sds
fa5527f unverified
raw
history blame
16.7 kB
import streamlit as st
#title
st.title("Smart Detection System of AI-Generated Text Models")
#subtitle
st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")
import os
import requests
import pickle
import pandas as pd
import nltk
import spacy
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
import numpy as np
############
from nltk.stem import WordNetLemmatizer
from nltk import ne_chunk, pos_tag, word_tokenize
from nltk.tree import Tree
from joblib import dump, load
nltk.download('wordnet')
nltk.download('maxent_ne_chunker')
nltk.download('words')
#######
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
# Check if the file exists
if not os.path.isfile('RandomForestClassifier.joblib'):
url = 'https://jaifar.net/RandomForestClassifier.joblib'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
}
response = requests.get(url, headers=headers)
with open('RandomForestClassifier.joblib', 'wb') as file:
file.write(response.content)
# Load the model from the file
clf_loaded = load('RandomForestClassifier.joblib')
# # At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
# with open('RandomForestClassifier.pkl', 'rb') as file:
# clf_loaded = pickle.load(file)
input_paragraph = st.text_area("Input your text here")
words_counts = word_tokenize(input_paragraph)
final_words = len(words_counts)
st.write('Words counts: ', final_words)
# df = pd.DataFrame(columns=["paragraph"])
# df = df.append({"paragraph": input_paragraph}, ignore_index=True)
df = pd.DataFrame([input_paragraph], columns=["paragraph"])
# Variable to control number of words to retrieve
num_words = 500
# Retrieving only the first num_words words of the paragraph
input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
# Extracting features
def extract_features(text):
words = word_tokenize(text)
sentences = sent_tokenize(text)
avg_word_length = sum(len(word) for word in words if word.isalpha()) / len(words)
avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
punctuation_count = len([char for char in text if char in '.,;:?!'])
stopword_count = len([word for word in words if word in stopwords.words('english')])
lemmatizer = WordNetLemmatizer()
lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
named_entity_count = len([chunk for chunk in ne_chunk(pos_tag(words)) if isinstance(chunk, Tree)])
tagged_words = nltk.pos_tag(words)
pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
pos_features = {
'pos_IN': pos_counts['IN'],
'pos_DT': pos_counts['DT'],
'pos_NN': pos_counts['NN'],
'pos_,': pos_counts[','],
'pos_VBZ': pos_counts['VBZ'],
'pos_WDT': pos_counts['WDT'],
'pos_TO': pos_counts['TO'],
'pos_VB': pos_counts['VB'],
'pos_VBG': pos_counts['VBG'],
'pos_.': pos_counts['.'],
'pos_JJ': pos_counts['JJ'],
'pos_NNS': pos_counts['NNS'],
'pos_RB': pos_counts['RB'],
'pos_CC': pos_counts['CC'],
'pos_VBN': pos_counts['VBN'],
}
features = {
'avg_word_length': avg_word_length,
'avg_sent_length': avg_sent_length,
'punctuation_count': punctuation_count,
'stopword_count': stopword_count,
'lemma_count': lemma_count,
'named_entity_count': named_entity_count,
}
features.update(pos_features)
return pd.Series(features)
# Creates a button named 'Press me'
press_me_button = st.button("Which Model Used?")
if press_me_button:
input_features = df['paragraph'].apply(extract_features)
predicted_llm = clf_loaded.predict(input_features)
#st.write(f"Predicted LLM: {predicted_llm[0]}")
predicted_proba = clf_loaded.predict_proba(input_features)
probabilities = predicted_proba[0]
labels = clf_loaded.classes_
# Create a mapping from old labels to new labels
label_mapping = {1: 'gpt3', 2: 'gpt4', 3: 'googlebard', 4: 'huggingface'}
# Apply the mapping to the labels
new_labels = [label_mapping[label] for label in labels]
# Create a dictionary that maps new labels to probabilities
prob_dict = {k: v for k, v in zip(new_labels, probabilities)}
# Convert probabilities to percentages and sort the dictionary in descending order
prob_dict = {k: f'{v*100:.2f}%' for k, v in sorted(prob_dict.items(), key=lambda item: item[1], reverse=True)}
# Print the dictionary
#st.write(prob_dict)
# Create a progress bar and a bar chart for each LLM
for llm, prob in prob_dict.items():
st.write(llm + ': ' + prob)
st.progress(float(prob.strip('%'))/100)
# import streamlit as st
# import os
# import requests
# import pickle
# import pandas as pd
# import nltk
# import spacy
# from nltk.corpus import stopwords
# from nltk.tokenize import word_tokenize, sent_tokenize
# import numpy as np
# ############
# from nltk.stem import WordNetLemmatizer
# from nltk import ne_chunk, pos_tag, word_tokenize
# from nltk.tree import Tree
# from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
# nltk.download('wordnet')
# nltk.download('maxent_ne_chunker')
# nltk.download('words')
# #######
# nltk.download('punkt')
# nltk.download('stopwords')
# nltk.download('averaged_perceptron_tagger')
# #version
# st.markdown("v1.9")
# # URL of the text file
# url = 'https://jaifar.net/text.txt'
# headers = {
# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
# }
# response = requests.get(url, headers=headers)
# # Check if the request was successful
# if response.status_code == 200:
# # Read the content of the file
# content = response.text
# # Print the content of the file
# # print(content)
# else:
# # Handle the case when the request fails
# print('Failed to download the file.')
# #title
# st.title("Smart Detection System of AI-Generated Text Models")
# #subtitle
# st.markdown("This is a POC for Smart Detection System of AI Generated Text Models project (:blue[MSc Data Analytics]), it is a pre-trained model that detect the probablities of using any of the known LLM (chatgpt3, chatgpt4, GoogleBard, HuggingfaceChat)")
# #input text
# input_paragraph = st.text_area("Input your text here")
# words_counts = word_tokenize(input_paragraph)
# final_words = len(words_counts)
# st.write('Words counts: ', final_words)
# # Define your options
# options = ["AI vs AI - RandomForest - 88 Samples", "AI vs AI - Ridge - 2000 Samples", "AI vs Human"]
# # Create a dropdown menu with "Option 2" as the default
# # selected_option = st.selectbox('Select an Option', options, index=1)
# selected_option = st.selectbox('Select an Option', options)
# # Check if the file exists
# if not os.path.isfile('AI_vs_AI_Ridge_2000_Samples.pkl'):
# # Download the zip file if it doesn't exist
# url = 'https://jaifar.net/AI_vs_AI_Ridge_2000_Samples.pkl'
# headers = {
# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
# }
# response = requests.get(url, headers=headers)
# # Save the file
# with open('AI_vs_AI_Ridge_2000_Samples.pkl', 'wb') as file2:
# file2.write(response.content)
# # df = pd.DataFrame(columns=["paragraph"])
# # df = df.append({"paragraph": input_paragraph}, ignore_index=True)
# df = pd.DataFrame([input_paragraph], columns=["paragraph"])
# # Variable to control number of words to retrieve
# num_words = 500
# # Retrieving only the first num_words words of the paragraph
# input_paragraph = ' '.join(word_tokenize(input_paragraph)[:num_words])
# # Extracting features
# def extract_features_AI_vs_AI_RandomForest_88_Samples(text):
# words = word_tokenize(text)
# sentences = sent_tokenize(text)
# avg_word_length = sum(len(word) for word in words if word.isalpha()) / len(words)
# avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
# punctuation_count = len([char for char in text if char in '.,;:?!'])
# stopword_count = len([word for word in words if word in stopwords.words('english')])
# lemmatizer = WordNetLemmatizer()
# lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
# named_entity_count = len([chunk for chunk in ne_chunk(pos_tag(words)) if isinstance(chunk, Tree)])
# tagged_words = nltk.pos_tag(words)
# pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
# pos_features = {
# 'pos_IN': pos_counts['IN'],
# 'pos_DT': pos_counts['DT'],
# 'pos_NN': pos_counts['NN'],
# 'pos_,': pos_counts[','],
# 'pos_VBZ': pos_counts['VBZ'],
# 'pos_WDT': pos_counts['WDT'],
# 'pos_TO': pos_counts['TO'],
# 'pos_VB': pos_counts['VB'],
# 'pos_VBG': pos_counts['VBG'],
# 'pos_.': pos_counts['.'],
# 'pos_JJ': pos_counts['JJ'],
# 'pos_NNS': pos_counts['NNS'],
# 'pos_RB': pos_counts['RB'],
# 'pos_CC': pos_counts['CC'],
# 'pos_VBN': pos_counts['VBN'],
# }
# features = {
# 'avg_word_length': avg_word_length,
# 'avg_sent_length': avg_sent_length,
# 'punctuation_count': punctuation_count,
# 'stopword_count': stopword_count,
# 'lemma_count': lemma_count,
# 'named_entity_count': named_entity_count,
# }
# features.update(pos_features)
# return pd.Series(features)
# # Extracting features for AI_vs_AI_Ridge_2000_Samples
# def extract_features_AI_vs_AI_Ridge_2000_Samples(text):
# words = word_tokenize(text)
# sentences = sent_tokenize(text)
# avg_word_length = sum(len(word) for word in words if word.isalpha()) / len(words)
# avg_sent_length = sum(len(sent) for sent in sentences) / len(sentences)
# punctuation_count = len([char for char in text if char in '.,;:?!'])
# stopword_count = len([word for word in words if word in stopwords.words('english')])
# lemmatizer = WordNetLemmatizer()
# lemma_count = len(set(lemmatizer.lemmatize(word) for word in words))
# named_entity_count = len([chunk for chunk in ne_chunk(pos_tag(words)) if isinstance(chunk, Tree)])
# tagged_words = nltk.pos_tag(words)
# pos_counts = nltk.FreqDist(tag for (word, tag) in tagged_words)
# pos_features = {
# 'pos_IN': pos_counts['IN'],
# 'pos_DT': pos_counts['DT'],
# 'pos_NN': pos_counts['NN'],
# 'pos_,': pos_counts[','],
# 'pos_VBZ': pos_counts['VBZ'],
# 'pos_WDT': pos_counts['WDT'],
# 'pos_TO': pos_counts['TO'],
# 'pos_VB': pos_counts['VB'],
# 'pos_PRP': pos_counts['PRP'],
# 'pos_VBP': pos_counts['VBP'],
# 'pos_VBG': pos_counts['VBG'],
# 'pos_.': pos_counts['.'],
# 'pos_JJ': pos_counts['JJ'],
# 'pos_NNS': pos_counts['NNS'],
# 'pos_RB': pos_counts['RB'],
# 'pos_PRP$': pos_counts['PRP$'],
# 'pos_CC': pos_counts['CC'],
# 'pos_MD': pos_counts['MD'],
# 'pos_VBN': pos_counts['VBN'],
# 'pos_NNP': pos_counts['NNP'],
# }
# features = {
# 'avg_word_length': avg_word_length,
# 'avg_sent_length': avg_sent_length,
# 'punctuation_count': punctuation_count,
# 'stopword_count': stopword_count,
# 'lemma_count': lemma_count,
# 'named_entity_count': named_entity_count,
# }
# # features.update(pos_features)
# features = pd.concat([features, pd.DataFrame(pos_features, index=[0])], axis=1)
# return pd.Series(features)
# # Function from Code(2)
# def add_vectorized_features(df):
# vectorizer = CountVectorizer()
# tfidf_vectorizer = TfidfVectorizer()
# X_bow = vectorizer.fit_transform(df['paragraph'])
# X_tfidf = tfidf_vectorizer.fit_transform(df['paragraph'])
# df_bow = pd.DataFrame(X_bow.toarray(), columns=vectorizer.get_feature_names_out())
# df_tfidf = pd.DataFrame(X_tfidf.toarray(), columns=tfidf_vectorizer.get_feature_names_out())
# df = pd.concat([df, df_bow, df_tfidf], axis=1)
# return df
# # Function define AI_vs_AI_RandomForest_88_Samples
# def AI_vs_AI_RandomForest_88_Samples(df):
# input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
# # try:
# # predicted_llm = clf_loaded.predict(input_features)
# # st.write(f"Predicted LLM: {predicted_llm[0]}")
# # predicted_proba = clf_loaded.predict_proba(input_features)
# # except Exception as e:
# # st.write(f"An error occurred: {str(e)}")
# # labels = clf_loaded.classes_
# # # Create a mapping from old labels to new labels
# # label_mapping = {1: 'gpt3', 2: 'gpt4', 3: 'googlebard', 4: 'huggingface'}
# # # Apply the mapping to the labels
# # new_labels = [label_mapping[label] for label in labels]
# # # Create a dictionary that maps new labels to probabilities
# # prob_dict = {k: v for k, v in zip(new_labels, probabilities)}
# # # Convert probabilities to percentages and sort the dictionary in descending order
# # prob_dict = {k: f'{v*100:.2f}%' for k, v in sorted(prob_dict.items(), key=lambda item: item[1], reverse=True)}
# # # Print the dictionary
# # #st.write(prob_dict)
# # # Create a progress bar and a bar chart for each LLM
# # for llm, prob in prob_dict.items():
# # st.write(llm + ': ' + prob)
# # st.progress(float(prob.strip('%'))/100)
# return
# def AI_vs_AI_Ridge_2000_Samples(df):
# # At this point, the pickle file should exist, either it was already there, or it has been downloaded and extracted.
# with open('AI_vs_AI_Ridge_2000_Samples.pkl', 'rb') as file2:
# clf_loaded = pickle.load(file2)
# input_features = df['paragraph'].apply(extract_features_AI_vs_AI_Ridge_2000_Samples)
# # Here, input_features is a DataFrame, not a Series
# input_features = pd.concat(input_features.values, ignore_index=True)
# # Add new vectorized features
# df = add_vectorized_features(df)
# # Concatenate input_features and df along columns
# final_features = pd.concat([input_features, df], axis=1)
# predicted_llm = clf_loaded.predict(final_features)
# st.write(f"Predicted LLM: {predicted_llm[0]}")
# return
# # Check if the file exists
# if not os.path.isfile('RandomForestClassifier.pkl'):
# # Download the zip file if it doesn't exist
# url = 'https://jaifar.net/RandomForestClassifier.pkl'
# headers = {
# 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
# }
# response = requests.get(url, headers=headers)
# # Save the file
# try:
# with open('RandomForestClassifier.pkl', 'wb') as file:
# file.write(response.content)
# except Exception as e:
# st.write(f"An error occurred while writing RandomForestClassifier.pkl: {str(e)}")
# try:
# with open('RandomForestClassifier.pkl', 'rb') as file:
# clf_loaded = pickle.load(file)
# except Exception as e:
# st.write(f"An error occurred while loading RandomForestClassifier.pkl: {str(e)}")
# # Creates a button
# press_me_button = st.button("Which Model Used?")
# if press_me_button:
# input_features = df['paragraph'].apply(extract_features_AI_vs_AI_RandomForest_88_Samples)
# try:
# predicted_llm = clf_loaded.predict(input_features)
# st.write(f"Predicted LLM: {predicted_llm[0]}")
# predicted_proba = clf_loaded.predict_proba(input_features)
# except Exception as e:
# st.write(f"An error occurred: {str(e)}")
# # # Use the selected option to control the flow of your application
# # if selected_option == "AI vs AI - RandomForest - 88 Samples":
# # AI_vs_AI_RandomForest_88_Samples(df)
# # elif selected_option == "AI vs AI - Ridge - 2000 Samples":
# # AI_vs_AI_Ridge_2000_Samples(df)
# # elif selected_option == "AI vs Human":
# # st.write("You selected AI vs Human!")