Spaces:
Running
Running
import os | |
import requests | |
import subprocess # Import the subprocess module | |
from keras.models import load_model | |
from keras.preprocessing.text import Tokenizer | |
from keras.preprocessing.sequence import pad_sequences | |
from sklearn.preprocessing import LabelEncoder | |
#from nltk.tokenize import word_tokenize # Assuming you've imported this for word_tokenize | |
import pickle | |
import numpy as np | |
import streamlit as st | |
# Custom headers for the HTTP request | |
headers = { | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3', | |
} | |
# Debugging: Print current working directory initially | |
st.write(f"Initial Current Working Directory: {os.getcwd()}") | |
# Check if the model folder exists | |
zip_file_path = "my_authorship_model_zip.zip" | |
if not os.path.exists('my_authorship_model'): | |
try: | |
# Download the model | |
model_url = 'https://jaifar.net/ADS/my_authorship_model_zip.zip' | |
r = requests.get(model_url, headers=headers) | |
r.raise_for_status() | |
# Debugging: Check if download is successful by examining content length | |
st.write(f"Downloaded model size: {len(r.content)} bytes") | |
# Save the downloaded content | |
with open(zip_file_path, "wb") as f: | |
f.write(r.content) | |
# Debugging: Verify that the zip file exists | |
if os.path.exists(zip_file_path): | |
st.write("Zip file exists") | |
# Debugging: List contents of the zip file using unzip | |
subprocess.run(['unzip', '-l', zip_file_path]) | |
# Extract the model using unzip | |
unzip_result = subprocess.run(['unzip', '-o', zip_file_path, '-d', 'my_authorship_model']) | |
# Debugging: Check unzip exit code (0 means success) | |
if unzip_result.returncode == 0: | |
st.write("Model folder successfully extracted using unzip") | |
# Debugging: List the directory contents after extraction | |
st.write("Listing directory contents:") | |
st.write(os.listdir('.')) | |
else: | |
st.write("Model folder was not extracted successfully using unzip") | |
exit(1) | |
else: | |
st.write("Zip file does not exist") | |
exit(1) | |
except Exception as e: | |
st.write(f"Failed to download or extract the model: {e}") | |
exit(1) | |
else: | |
st.write("Model folder exists") | |
# Debugging: Print current working directory after extraction | |
st.write(f"Current Working Directory After Extraction: {os.getcwd()}") | |
# Debugging: Check if model folder contains required files | |
try: | |
model_files = os.listdir('my_authorship_model') | |
st.write(f"Files in model folder: {model_files}") | |
except Exception as e: | |
st.write(f"Could not list files in model folder: {e}") | |
# Download required files | |
file_urls = { | |
'tokenizer.pkl': 'https://jaifar.net/ADS/tokenizer.pkl', | |
'label_encoder.pkl': 'https://jaifar.net/ADS/label_encoder.pkl' | |
} | |
for filename, url in file_urls.items(): | |
try: | |
r = requests.get(url, headers=headers) | |
r.raise_for_status() | |
with open(filename, 'wb') as f: | |
f.write(r.content) | |
except Exception as e: | |
st.write(f"Failed to download {filename}: {e}") | |
exit(1) | |
# Load the saved model | |
loaded_model = load_model("my_authorship_model") | |
# Load the saved tokenizer and label encoder | |
with open('tokenizer.pkl', 'rb') as handle: | |
tokenizer = pickle.load(handle) | |
with open('label_encoder.pkl', 'rb') as handle: | |
label_encoder = pickle.load(handle) | |
max_length = 300 # As defined in the training code | |
# Function to predict author for new text | |
def predict_author(new_text, model, tokenizer, label_encoder): | |
sequence = tokenizer.texts_to_sequences([new_text]) | |
padded_sequence = pad_sequences(sequence, maxlen=max_length, padding='post', truncating='post') | |
prediction = model.predict(padded_sequence) | |
predicted_label = label_encoder.inverse_transform([prediction.argmax()])[0] | |
probabilities = prediction[0] | |
author_probabilities = {} | |
for idx, prob in enumerate(probabilities): | |
author = label_encoder.inverse_transform([idx])[0] | |
author_probabilities[author] = prob | |
return predicted_label, author_probabilities | |
st.markdown("CNN : version: 1.2") | |
new_text = st.text_area("Input your text here") | |
#words_counts = word_tokenize(new_text) # Changed input_paragraph to new_text | |
#final_words = len(words_counts) | |
#st.write('Words counts: ', final_words) | |
predicted_author, author_probabilities = predict_author(new_text, loaded_model, tokenizer, label_encoder) | |
sorted_probabilities = sorted(author_probabilities.items(), key=lambda x: x[1], reverse=True) | |
st.write(f"The text is most likely written by: {predicted_author}") | |
st.write("Probabilities for each author are (sorted):") | |
for author, prob in sorted_probabilities: | |
st.write(f"{author}: {prob * 100:.2f}%") | |