Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,67 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
25 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
26 |
-
|
|
|
|
|
|
|
27 |
frames = []
|
28 |
-
|
|
|
|
|
29 |
ret, frame = cap.read()
|
30 |
if not ret:
|
31 |
break
|
|
|
|
|
|
|
32 |
frames.append(process_frame(frame))
|
|
|
|
|
33 |
cap.release()
|
34 |
-
for frame in tqdm(frames):
|
35 |
-
out.write(frame)
|
36 |
out.release()
|
37 |
-
return 'out.mp4'
|
38 |
-
|
39 |
-
|
40 |
-
def predict_video(video, bg_image):
|
41 |
-
result_file = remove_green_screen(video, bg_image)
|
42 |
-
with open(result_file, 'rb') as f:
|
43 |
-
result = f.read()
|
44 |
-
return result
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
gr.inputs.Video(label="Video"),
|
49 |
-
gr.inputs.Image(label="Background Image")
|
50 |
-
]
|
51 |
|
52 |
-
outputs = gr.outputs.Video(label="Processed Video", type="mp4", source="file")
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
article = "<p style='text-align: center'><a href='https://huggingface.co/blog/how-to-build-a-web-app-for-a-transformer-in-pytorch'>How to Build a Web App for a Transformer in PyTorch</a></p>"
|
57 |
-
examples = [
|
58 |
-
["./input.mp4", "./bg.png"],
|
59 |
-
["./input2.mp4", "./bg2.png"]
|
60 |
-
]
|
61 |
|
62 |
-
gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
+
|
5 |
+
def remove_green_screen(video):
|
6 |
+
def process_frame(frame):
|
7 |
+
# Convert to HSV color space
|
8 |
+
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
9 |
+
|
10 |
+
# Define the range of green color
|
11 |
+
lower_green = np.array([25, 52, 72])
|
12 |
+
upper_green = np.array([102, 255, 255])
|
13 |
+
|
14 |
+
# Threshold the HSV image to get only green colors
|
15 |
+
mask = cv2.inRange(hsv, lower_green, upper_green)
|
16 |
+
|
17 |
+
# Bitwise-AND mask and original image
|
18 |
+
res = cv2.bitwise_and(frame, frame, mask=mask)
|
19 |
+
|
20 |
+
return res
|
21 |
+
|
22 |
+
# Load background image
|
23 |
+
bg_image = cv2.imread("background.jpg")
|
24 |
+
|
25 |
+
# Open video file
|
26 |
+
cap = cv2.VideoCapture(video)
|
27 |
+
|
28 |
+
# Get video codec and fps
|
29 |
+
fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))
|
30 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
31 |
+
|
32 |
+
# Get video dimensions
|
33 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
34 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
35 |
+
|
36 |
+
# Create output video writer
|
37 |
+
out = cv2.VideoWriter("output.mp4", fourcc, fps, (width, height))
|
38 |
+
|
39 |
frames = []
|
40 |
+
|
41 |
+
# Loop through video frames
|
42 |
+
while True:
|
43 |
ret, frame = cap.read()
|
44 |
if not ret:
|
45 |
break
|
46 |
+
|
47 |
+
# Process frame
|
48 |
+
bg = cv2.imread(bg_image)
|
49 |
frames.append(process_frame(frame))
|
50 |
+
|
51 |
+
# Release video file and output video writer
|
52 |
cap.release()
|
|
|
|
|
53 |
out.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Write output video
|
56 |
+
out = cv2.VideoWriter("output.mp4", fourcc, fps, (width, height))
|
57 |
+
for frame in frames:
|
58 |
+
out.write(frame)
|
59 |
+
out.release()
|
60 |
|
61 |
+
return "output.mp4"
|
|
|
|
|
|
|
62 |
|
|
|
63 |
|
64 |
+
input_video = gr.inputs.Video(label="Input Video")
|
65 |
+
outputs = gr.outputs.Video(label="Processed Video", type="mp4")
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
gr.Interface(remove_green_screen, inputs=input_video, outputs=outputs).launch()
|