import gradio as gr | |
from transformers import pipeline | |
def embed_html(html_frame): | |
return gr.outputs.HTML(html_frame) | |
def hugging_face_fn(inputs): | |
return {"output": embed_html(inputs)} | |
iface = gr.Interface( | |
fn=hugging_face_fn, | |
inputs=gr.inputs.Textbox(label="Enter HTML frame here"), | |
outputs="html", | |
title="HTML Frame Embedder", | |
description="Input an HTML frame and see it embedded below." | |
) | |
model = pipeline("text-generation", model="gpt2") | |
model.add_pipe(iface) | |
model("Hello world! This is an HTML frame <iframe src='https://www.example.com'></iframe>") | |