Spaces:
Running
on
Zero
Running
on
Zero
UI changes and ZeroGPU optimizations (#1)
Browse files- UI changes and ZeroGPU optimization (15766a45e9447be44476284711e250c201f27b0e)
Co-authored-by: Apolinário from multimodal AI art <[email protected]>
app.py
CHANGED
|
@@ -1,55 +1,175 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
-
|
|
|
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
def generate(
|
| 7 |
-
seed=42,
|
| 8 |
prompt="A person",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
negative_prompt="blurry, out of focus",
|
| 10 |
guidance_scale=3.0,
|
| 11 |
number_of_images=1,
|
| 12 |
number_of_steps=10,
|
| 13 |
-
base_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f",
|
| 14 |
base_image_strength=0.15,
|
| 15 |
-
composition_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f",
|
| 16 |
composition_image_strength=1.0,
|
| 17 |
-
style_image="https://github.com/okaris/omni-zero/assets/1448702/64dc150b-f683-41b1-be23-b6a52c771584",
|
| 18 |
style_image_strength=1.0,
|
| 19 |
-
identity_image="https://github.com/okaris/omni-zero/assets/1448702/ba193a3a-f90e-4461-848a-560454531c58",
|
| 20 |
identity_image_strength=1.0,
|
| 21 |
depth_image=None,
|
| 22 |
depth_image_strength=0.5,
|
|
|
|
| 23 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
prompt=prompt,
|
| 32 |
negative_prompt=negative_prompt,
|
| 33 |
guidance_scale=guidance_scale,
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
depth_image_strength=depth_image_strength,
|
| 46 |
-
)
|
| 47 |
|
| 48 |
-
# for i, image in enumerate(images):
|
| 49 |
-
# image.save(f"oz_output_{i}.jpg")
|
| 50 |
return images
|
| 51 |
|
|
|
|
|
|
|
|
|
|
| 52 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
| 53 |
with gr.Row():
|
| 54 |
with gr.Column():
|
| 55 |
with gr.Row():
|
|
@@ -57,38 +177,42 @@ with gr.Blocks() as demo:
|
|
| 57 |
with gr.Row():
|
| 58 |
negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, out of focus")
|
| 59 |
with gr.Row():
|
| 60 |
-
|
| 61 |
-
number_of_images = gr.Slider(label="Number of Outputs",step=1, minimum=1, maximum=4, value=1)
|
| 62 |
-
with gr.Row():
|
| 63 |
-
guidance_scale = gr.Slider(label="Guidance Scale",step=0.1, minimum=0.0, maximum=14.0, value=3.0)
|
| 64 |
-
number_of_steps = gr.Slider(label="Number of Steps",step=1, minimum=1, maximum=50, value=10)
|
| 65 |
-
with gr.Row():
|
| 66 |
-
with gr.Column():
|
| 67 |
with gr.Row():
|
| 68 |
-
|
| 69 |
with gr.Row():
|
| 70 |
-
|
| 71 |
-
|
|
|
|
| 72 |
with gr.Row():
|
| 73 |
-
|
| 74 |
with gr.Row():
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
with gr.Column():
|
| 78 |
with gr.Row():
|
| 79 |
-
|
| 80 |
with gr.Row():
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
| 88 |
# with gr.Row():
|
| 89 |
# depth_image = gr.Image(label="depth_image", value=None)
|
| 90 |
# with gr.Row():
|
| 91 |
# depth_image_strength = gr.Slider(label="depth_image_strength",step=0.01, minimum=0.0, maximum=1.0, value=0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
with gr.Column():
|
| 93 |
with gr.Row():
|
| 94 |
out = gr.Gallery(label="Output(s)")
|
|
@@ -97,24 +221,30 @@ with gr.Blocks() as demo:
|
|
| 97 |
submit = gr.Button("Generate")
|
| 98 |
|
| 99 |
submit.click(generate, inputs=[
|
| 100 |
-
seed,
|
| 101 |
prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
negative_prompt,
|
| 103 |
guidance_scale,
|
| 104 |
number_of_images,
|
| 105 |
number_of_steps,
|
| 106 |
-
base_image,
|
| 107 |
base_image_strength,
|
| 108 |
-
composition_image,
|
| 109 |
composition_image_strength,
|
| 110 |
-
style_image,
|
| 111 |
style_image_strength,
|
| 112 |
-
identity_image,
|
| 113 |
identity_image_strength,
|
| 114 |
],
|
| 115 |
outputs=[out]
|
| 116 |
)
|
| 117 |
# clear.click(lambda: None, None, chatbot, queue=False)
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
if __name__ == "__main__":
|
| 120 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
+
import os
|
| 4 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 5 |
|
| 6 |
+
import sys
|
| 7 |
+
sys.path.insert(0, './diffusers/src')
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
|
| 12 |
+
#Hack for ZeroGPU
|
| 13 |
+
torch.jit.script = lambda f: f
|
| 14 |
+
####
|
| 15 |
+
|
| 16 |
+
from huggingface_hub import snapshot_download
|
| 17 |
+
from diffusers import DPMSolverMultistepScheduler
|
| 18 |
+
from diffusers.models import ControlNetModel
|
| 19 |
+
|
| 20 |
+
from transformers import CLIPVisionModelWithProjection
|
| 21 |
+
|
| 22 |
+
from pipeline import OmniZeroPipeline
|
| 23 |
+
from insightface.app import FaceAnalysis
|
| 24 |
+
from controlnet_aux import ZoeDetector
|
| 25 |
+
from utils import draw_kps, load_and_resize_image, align_images
|
| 26 |
+
|
| 27 |
+
import cv2
|
| 28 |
+
import numpy as np
|
| 29 |
+
|
| 30 |
+
base_model="frankjoshua/albedobaseXL_v13"
|
| 31 |
+
|
| 32 |
+
snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2")
|
| 33 |
+
face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider'])
|
| 34 |
+
face_analysis.prepare(ctx_id=0, det_size=(640, 640))
|
| 35 |
+
|
| 36 |
+
dtype = torch.float16
|
| 37 |
+
|
| 38 |
+
ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
| 39 |
+
"h94/IP-Adapter",
|
| 40 |
+
subfolder="models/image_encoder",
|
| 41 |
+
torch_dtype=dtype,
|
| 42 |
+
).to("cuda")
|
| 43 |
+
|
| 44 |
+
zoedepthnet_path = "okaris/zoe-depth-controlnet-xl"
|
| 45 |
+
zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to("cuda")
|
| 46 |
+
|
| 47 |
+
identitiynet_path = "okaris/face-controlnet-xl"
|
| 48 |
+
identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to("cuda")
|
| 49 |
+
|
| 50 |
+
zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
|
| 51 |
+
|
| 52 |
+
pipeline = OmniZeroPipeline.from_pretrained(
|
| 53 |
+
base_model,
|
| 54 |
+
controlnet=[identitynet, zoedepthnet],
|
| 55 |
+
torch_dtype=dtype,
|
| 56 |
+
image_encoder=ip_adapter_plus_image_encoder,
|
| 57 |
+
).to("cuda")
|
| 58 |
+
|
| 59 |
+
config = pipeline.scheduler.config
|
| 60 |
+
config["timestep_spacing"] = "trailing"
|
| 61 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero")
|
| 62 |
+
pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"])
|
| 63 |
+
|
| 64 |
+
def get_largest_face_embedding_and_kps(image, target_image=None):
|
| 65 |
+
face_info = face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
|
| 66 |
+
if len(face_info) == 0:
|
| 67 |
+
return None, None
|
| 68 |
+
largest_face = sorted(face_info, key=lambda x: x['bbox'][2] * x['bbox'][3], reverse=True)[0]
|
| 69 |
+
face_embedding = torch.tensor(largest_face['embedding']).to("cuda")
|
| 70 |
+
if target_image is None:
|
| 71 |
+
target_image = image
|
| 72 |
+
zeros = np.zeros((target_image.size[1], target_image.size[0], 3), dtype=np.uint8)
|
| 73 |
+
face_kps_image = draw_kps(zeros, largest_face['kps'])
|
| 74 |
+
return face_embedding, face_kps_image
|
| 75 |
+
|
| 76 |
+
@spaces.GPU()
|
| 77 |
def generate(
|
|
|
|
| 78 |
prompt="A person",
|
| 79 |
+
composition_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f",
|
| 80 |
+
style_image="https://github.com/okaris/omni-zero/assets/1448702/64dc150b-f683-41b1-be23-b6a52c771584",
|
| 81 |
+
identity_image="https://github.com/okaris/omni-zero/assets/1448702/ba193a3a-f90e-4461-848a-560454531c58",
|
| 82 |
+
base_image="https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f",
|
| 83 |
+
seed=42,
|
| 84 |
negative_prompt="blurry, out of focus",
|
| 85 |
guidance_scale=3.0,
|
| 86 |
number_of_images=1,
|
| 87 |
number_of_steps=10,
|
|
|
|
| 88 |
base_image_strength=0.15,
|
|
|
|
| 89 |
composition_image_strength=1.0,
|
|
|
|
| 90 |
style_image_strength=1.0,
|
|
|
|
| 91 |
identity_image_strength=1.0,
|
| 92 |
depth_image=None,
|
| 93 |
depth_image_strength=0.5,
|
| 94 |
+
progress=gr.Progress(track_tqdm=True)
|
| 95 |
):
|
| 96 |
+
resolution = 1024
|
| 97 |
+
|
| 98 |
+
if base_image is not None:
|
| 99 |
+
base_image = load_and_resize_image(base_image, resolution, resolution)
|
| 100 |
+
else:
|
| 101 |
+
if composition_image is not None:
|
| 102 |
+
base_image = load_and_resize_image(composition_image, resolution, resolution)
|
| 103 |
+
else:
|
| 104 |
+
raise ValueError("You must provide a base image or a composition image")
|
| 105 |
+
|
| 106 |
+
if depth_image is None:
|
| 107 |
+
depth_image = zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution)
|
| 108 |
+
else:
|
| 109 |
+
depth_image = load_and_resize_image(depth_image, resolution, resolution)
|
| 110 |
+
|
| 111 |
+
base_image, depth_image = align_images(base_image, depth_image)
|
| 112 |
+
|
| 113 |
+
if composition_image is not None:
|
| 114 |
+
composition_image = load_and_resize_image(composition_image, resolution, resolution)
|
| 115 |
+
else:
|
| 116 |
+
composition_image = base_image
|
| 117 |
+
|
| 118 |
+
if style_image is not None:
|
| 119 |
+
style_image = load_and_resize_image(style_image, resolution, resolution)
|
| 120 |
+
else:
|
| 121 |
+
raise ValueError("You must provide a style image")
|
| 122 |
|
| 123 |
+
if identity_image is not None:
|
| 124 |
+
identity_image = load_and_resize_image(identity_image, resolution, resolution)
|
| 125 |
+
else:
|
| 126 |
+
raise ValueError("You must provide an identity image")
|
| 127 |
+
|
| 128 |
+
face_embedding_identity_image, target_kps = get_largest_face_embedding_and_kps(identity_image, base_image)
|
| 129 |
+
if face_embedding_identity_image is None:
|
| 130 |
+
raise ValueError("No face found in the identity image, the image might be cropped too tightly or the face is too small")
|
| 131 |
+
|
| 132 |
+
face_embedding_base_image, face_kps_base_image = get_largest_face_embedding_and_kps(base_image)
|
| 133 |
+
if face_embedding_base_image is not None:
|
| 134 |
+
target_kps = face_kps_base_image
|
| 135 |
|
| 136 |
+
pipeline.set_ip_adapter_scale([identity_image_strength,
|
| 137 |
+
{
|
| 138 |
+
"down": { "block_2": [0.0, 0.0] },
|
| 139 |
+
"up": { "block_0": [0.0, style_image_strength, 0.0] }
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"down": { "block_2": [0.0, composition_image_strength] },
|
| 143 |
+
"up": { "block_0": [0.0, 0.0, 0.0] }
|
| 144 |
+
}
|
| 145 |
+
])
|
| 146 |
+
|
| 147 |
+
generator = torch.Generator(device="cpu").manual_seed(seed)
|
| 148 |
+
|
| 149 |
+
images = pipeline(
|
| 150 |
prompt=prompt,
|
| 151 |
negative_prompt=negative_prompt,
|
| 152 |
guidance_scale=guidance_scale,
|
| 153 |
+
ip_adapter_image=[face_embedding_identity_image, style_image, composition_image],
|
| 154 |
+
image=base_image,
|
| 155 |
+
control_image=[target_kps, depth_image],
|
| 156 |
+
controlnet_conditioning_scale=[identity_image_strength, depth_image_strength],
|
| 157 |
+
identity_control_indices=[(0,0)],
|
| 158 |
+
num_inference_steps=number_of_steps,
|
| 159 |
+
num_images_per_prompt=number_of_images,
|
| 160 |
+
strength=(1-base_image_strength),
|
| 161 |
+
generator=generator,
|
| 162 |
+
seed=seed,
|
| 163 |
+
).images
|
|
|
|
|
|
|
| 164 |
|
|
|
|
|
|
|
| 165 |
return images
|
| 166 |
|
| 167 |
+
#Move the components in the example fields outside so they are available when gr.Examples is instantiated
|
| 168 |
+
|
| 169 |
+
|
| 170 |
with gr.Blocks() as demo:
|
| 171 |
+
gr.Markdown("<h1 style='text-align: center'>Omni Zero</h1>")
|
| 172 |
+
gr.Markdown("<h4 style='text-align: center'>A diffusion pipeline for zero-shot stylized portrait creation [<a href='https://github.com/okaris/omni-zero' target='_blank'>GitHub</a>], [<a href='https://styleof.com/s/remix-yourself' target='_blank'>StyleOf Remix Yourself</a>]</h4>")
|
| 173 |
with gr.Row():
|
| 174 |
with gr.Column():
|
| 175 |
with gr.Row():
|
|
|
|
| 177 |
with gr.Row():
|
| 178 |
negative_prompt = gr.Textbox(label="Negative Prompt", value="blurry, out of focus")
|
| 179 |
with gr.Row():
|
| 180 |
+
with gr.Column(min_width=140):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
with gr.Row():
|
| 182 |
+
composition_image = gr.Image(label="Composition")
|
| 183 |
with gr.Row():
|
| 184 |
+
composition_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=1.0)
|
| 185 |
+
#with gr.Row():
|
| 186 |
+
with gr.Column(min_width=140):
|
| 187 |
with gr.Row():
|
| 188 |
+
style_image = gr.Image(label="Style Image")
|
| 189 |
with gr.Row():
|
| 190 |
+
style_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=1.0)
|
| 191 |
+
with gr.Column(min_width=140):
|
|
|
|
| 192 |
with gr.Row():
|
| 193 |
+
identity_image = gr.Image(label="Identity Image")
|
| 194 |
with gr.Row():
|
| 195 |
+
identity_image_strength = gr.Slider(label="Strenght",step=0.01, minimum=0.0, maximum=1.0, value=1.0)
|
| 196 |
+
with gr.Accordion("Advanced options", open=False):
|
| 197 |
+
with gr.Row():
|
| 198 |
+
with gr.Column(min_width=140):
|
| 199 |
+
with gr.Row():
|
| 200 |
+
base_image = gr.Image(label="Base Image")
|
| 201 |
+
with gr.Row():
|
| 202 |
+
base_image_strength = gr.Slider(label="Strength",step=0.01, minimum=0.0, maximum=1.0, value=0.15, min_width=120)
|
| 203 |
+
# with gr.Column(min_width=140):
|
| 204 |
# with gr.Row():
|
| 205 |
# depth_image = gr.Image(label="depth_image", value=None)
|
| 206 |
# with gr.Row():
|
| 207 |
# depth_image_strength = gr.Slider(label="depth_image_strength",step=0.01, minimum=0.0, maximum=1.0, value=0.5)
|
| 208 |
+
|
| 209 |
+
with gr.Row():
|
| 210 |
+
seed = gr.Slider(label="Seed",step=1, minimum=0, maximum=10000000, value=42)
|
| 211 |
+
number_of_images = gr.Slider(label="Number of Outputs",step=1, minimum=1, maximum=4, value=1)
|
| 212 |
+
with gr.Row():
|
| 213 |
+
guidance_scale = gr.Slider(label="Guidance Scale",step=0.1, minimum=0.0, maximum=14.0, value=3.0)
|
| 214 |
+
number_of_steps = gr.Slider(label="Number of Steps",step=1, minimum=1, maximum=50, value=10)
|
| 215 |
+
|
| 216 |
with gr.Column():
|
| 217 |
with gr.Row():
|
| 218 |
out = gr.Gallery(label="Output(s)")
|
|
|
|
| 221 |
submit = gr.Button("Generate")
|
| 222 |
|
| 223 |
submit.click(generate, inputs=[
|
|
|
|
| 224 |
prompt,
|
| 225 |
+
composition_image,
|
| 226 |
+
style_image,
|
| 227 |
+
identity_image,
|
| 228 |
+
base_image,
|
| 229 |
+
seed,
|
| 230 |
negative_prompt,
|
| 231 |
guidance_scale,
|
| 232 |
number_of_images,
|
| 233 |
number_of_steps,
|
|
|
|
| 234 |
base_image_strength,
|
|
|
|
| 235 |
composition_image_strength,
|
|
|
|
| 236 |
style_image_strength,
|
|
|
|
| 237 |
identity_image_strength,
|
| 238 |
],
|
| 239 |
outputs=[out]
|
| 240 |
)
|
| 241 |
# clear.click(lambda: None, None, chatbot, queue=False)
|
| 242 |
+
gr.Examples(
|
| 243 |
+
examples=[["A person", "https://github.com/okaris/omni-zero/assets/1448702/2ca63443-c7f3-4ba6-95c1-2a341414865f", "https://github.com/okaris/omni-zero/assets/1448702/64dc150b-f683-41b1-be23-b6a52c771584", "https://github.com/okaris/omni-zero/assets/1448702/ba193a3a-f90e-4461-848a-560454531c58"]],
|
| 244 |
+
inputs=[prompt, composition_image, style_image, identity_image],
|
| 245 |
+
outputs=[out],
|
| 246 |
+
fn=generate,
|
| 247 |
+
cache_examples="lazy",
|
| 248 |
+
)
|
| 249 |
if __name__ == "__main__":
|
| 250 |
demo.launch()
|