Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,650 Bytes
1d4b9ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import sys
sys.path.insert(0, './diffusers/src')
import torch
import torch.nn as nn
from huggingface_hub import snapshot_download
from diffusers import DPMSolverMultistepScheduler
from diffusers.models import ControlNetModel
from transformers import CLIPVisionModelWithProjection
from pipeline import OmniZeroPipeline
from insightface.app import FaceAnalysis
from controlnet_aux import ZoeDetector
from utils import draw_kps, load_and_resize_image, align_images
import cv2
import numpy as np
class OmniZeroSingle():
def __init__(self,
base_model="stabilityai/stable-diffusion-xl-base-1.0",
):
snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2")
self.face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.face_analysis.prepare(ctx_id=0, det_size=(640, 640))
dtype = torch.float16
ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=dtype,
).to("cuda")
zoedepthnet_path = "okaris/zoe-depth-controlnet-xl"
zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to("cuda")
identitiynet_path = "okaris/face-controlnet-xl"
identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to("cuda")
self.zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
self.pipeline = OmniZeroPipeline.from_pretrained(
base_model,
controlnet=[identitynet, zoedepthnet],
torch_dtype=dtype,
image_encoder=ip_adapter_plus_image_encoder,
).to("cuda")
config = self.pipeline.scheduler.config
config["timestep_spacing"] = "trailing"
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero")
self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"])
def get_largest_face_embedding_and_kps(self, image, target_image=None):
face_info = self.face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
if len(face_info) == 0:
return None, None
largest_face = sorted(face_info, key=lambda x: x['bbox'][2] * x['bbox'][3], reverse=True)[0]
face_embedding = torch.tensor(largest_face['embedding']).to("cuda")
if target_image is None:
target_image = image
zeros = np.zeros((target_image.size[1], target_image.size[0], 3), dtype=np.uint8)
face_kps_image = draw_kps(zeros, largest_face['kps'])
return face_embedding, face_kps_image
def generate(self,
seed=42,
prompt="A person",
negative_prompt="blurry, out of focus",
guidance_scale=3.0,
number_of_images=1,
number_of_steps=10,
base_image=None,
base_image_strength=0.15,
composition_image=None,
composition_image_strength=1.0,
style_image=None,
style_image_strength=1.0,
identity_image=None,
identity_image_strength=1.0,
depth_image=None,
depth_image_strength=0.5,
):
resolution = 1024
if base_image is not None:
base_image = load_and_resize_image(base_image, resolution, resolution)
else:
if composition_image is not None:
base_image = load_and_resize_image(composition_image, resolution, resolution)
else:
raise ValueError("You must provide a base image or a composition image")
if depth_image is None:
depth_image = self.zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution)
else:
depth_image = load_and_resize_image(depth_image, resolution, resolution)
base_image, depth_image = align_images(base_image, depth_image)
if composition_image is not None:
composition_image = load_and_resize_image(composition_image, resolution, resolution)
else:
composition_image = base_image
if style_image is not None:
style_image = load_and_resize_image(style_image, resolution, resolution)
else:
raise ValueError("You must provide a style image")
if identity_image is not None:
identity_image = load_and_resize_image(identity_image, resolution, resolution)
else:
raise ValueError("You must provide an identity image")
face_embedding_identity_image, target_kps = self.get_largest_face_embedding_and_kps(identity_image, base_image)
if face_embedding_identity_image is None:
raise ValueError("No face found in the identity image, the image might be cropped too tightly or the face is too small")
face_embedding_base_image, face_kps_base_image = self.get_largest_face_embedding_and_kps(base_image)
if face_embedding_base_image is not None:
target_kps = face_kps_base_image
self.pipeline.set_ip_adapter_scale([identity_image_strength,
{
"down": { "block_2": [0.0, 0.0] },
"up": { "block_0": [0.0, style_image_strength, 0.0] }
},
{
"down": { "block_2": [0.0, composition_image_strength] },
"up": { "block_0": [0.0, 0.0, 0.0] }
}
])
generator = torch.Generator(device="cpu").manual_seed(seed)
images = self.pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
ip_adapter_image=[face_embedding_identity_image, style_image, composition_image],
image=base_image,
control_image=[target_kps, depth_image],
controlnet_conditioning_scale=[identity_image_strength, depth_image_strength],
identity_control_indices=[(0,0)],
num_inference_steps=number_of_steps,
num_images_per_prompt=number_of_images,
strength=(1-base_image_strength),
generator=generator,
seed=seed,
).images
return images |