Spaces:
Runtime error
Runtime error
| # -*- coding: utf-8 -*- | |
| # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
| # holder of all proprietary rights on this computer program. | |
| # You can only use this computer program if you have closed | |
| # a license agreement with MPG or you get the right to use the computer | |
| # program from someone who is authorized to grant you that right. | |
| # Any use of the computer program without a valid license is prohibited and | |
| # liable to prosecution. | |
| # | |
| # Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
| # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
| # for Intelligent Systems. All rights reserved. | |
| # | |
| # Contact: [email protected] | |
| import logging | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| logging.getLogger("lightning").setLevel(logging.ERROR) | |
| logging.getLogger("trimesh").setLevel(logging.ERROR) | |
| import os | |
| import numpy as np | |
| import torch | |
| import torchvision | |
| import trimesh | |
| from pytorch3d.ops import SubdivideMeshes | |
| from termcolor import colored | |
| from tqdm.auto import tqdm | |
| from apps.IFGeo import IFGeo | |
| from apps.Normal import Normal | |
| from lib.common.BNI import BNI | |
| from lib.common.BNI_utils import save_normal_tensor | |
| from lib.common.config import cfg | |
| from lib.common.imutils import blend_rgb_norm | |
| from lib.common.local_affine import register | |
| from lib.common.render import query_color, Render | |
| from lib.common.train_util import Format, init_loss | |
| from lib.common.voxelize import VoxelGrid | |
| from lib.dataset.mesh_util import * | |
| from lib.dataset.TestDataset import TestDataset | |
| from lib.net.geometry import rot6d_to_rotmat, rotation_matrix_to_angle_axis | |
| torch.backends.cudnn.benchmark = True | |
| def generate_video(vis_tensor_path): | |
| in_tensor = torch.load(vis_tensor_path) | |
| render = Render(size=512, device=torch.device("cuda:0")) | |
| # visualize the final results in self-rotation mode | |
| verts_lst = in_tensor["body_verts"] + in_tensor["BNI_verts"] | |
| faces_lst = in_tensor["body_faces"] + in_tensor["BNI_faces"] | |
| # self-rotated video | |
| tmp_path = vis_tensor_path.replace("_in_tensor.pt", "_tmp.mp4") | |
| out_path = vis_tensor_path.replace("_in_tensor.pt", ".mp4") | |
| render.load_meshes(verts_lst, faces_lst) | |
| render.get_rendered_video_multi(in_tensor, tmp_path) | |
| os.system(f'ffmpeg -y -loglevel quiet -stats -i {tmp_path} -c:v libx264 {out_path}') | |
| return out_path, out_path | |
| def generate_model(in_path, fitting_step=50): | |
| out_dir = "./results" | |
| # cfg read and merge | |
| cfg.merge_from_file("./configs/econ.yaml") | |
| cfg.merge_from_file("./lib/pymafx/configs/pymafx_config.yaml") | |
| device = torch.device(f"cuda:0") | |
| # setting for testing on in-the-wild images | |
| cfg_show_list = [ | |
| "test_gpus", [0], "mcube_res", 512, "clean_mesh", True, "test_mode", True, "batch_size", 1 | |
| ] | |
| cfg.merge_from_list(cfg_show_list) | |
| cfg.freeze() | |
| # load normal model | |
| normal_net = Normal.load_from_checkpoint( | |
| cfg=cfg, checkpoint_path=cfg.normal_path, map_location=device, strict=False | |
| ) | |
| normal_net = normal_net.to(device) | |
| normal_net.netG.eval() | |
| print( | |
| colored( | |
| f"Resume Normal Estimator from {Format.start} {cfg.normal_path} {Format.end}", "green" | |
| ) | |
| ) | |
| # SMPLX object | |
| SMPLX_object = SMPLX() | |
| dataset_param = { | |
| "image_path": in_path, | |
| "use_seg": True, # w/ or w/o segmentation | |
| "hps_type": cfg.bni.hps_type, # pymafx/pixie | |
| "vol_res": cfg.vol_res, | |
| "single": True, | |
| } | |
| if cfg.bni.use_ifnet: | |
| # load IFGeo model | |
| ifnet = IFGeo.load_from_checkpoint( | |
| cfg=cfg, checkpoint_path=cfg.ifnet_path, map_location=device, strict=False | |
| ) | |
| ifnet = ifnet.to(device) | |
| ifnet.netG.eval() | |
| print(colored(f"Resume IF-Net+ from {Format.start} {cfg.ifnet_path} {Format.end}", "green")) | |
| print(colored(f"Complete with {Format.start} IF-Nets+ (Implicit) {Format.end}", "green")) | |
| else: | |
| print(colored(f"Complete with {Format.start} SMPL-X (Explicit) {Format.end}", "green")) | |
| dataset = TestDataset(dataset_param, device) | |
| print(colored(f"Dataset Size: {len(dataset)}", "green")) | |
| data = dataset[0] | |
| losses = init_loss() | |
| print(f"{data['name']}") | |
| # final results rendered as image (PNG) | |
| # 1. Render the final fitted SMPL (xxx_smpl.png) | |
| # 2. Render the final reconstructed clothed human (xxx_cloth.png) | |
| # 3. Blend the original image with predicted cloth normal (xxx_overlap.png) | |
| # 4. Blend the cropped image with predicted cloth normal (xxx_crop.png) | |
| os.makedirs(osp.join(out_dir, cfg.name, "png"), exist_ok=True) | |
| # final reconstruction meshes (OBJ) | |
| # 1. SMPL mesh (xxx_smpl_xx.obj) | |
| # 2. SMPL params (xxx_smpl.npy) | |
| # 3. d-BiNI surfaces (xxx_BNI.obj) | |
| # 4. seperate face/hand mesh (xxx_hand/face.obj) | |
| # 5. full shape impainted by IF-Nets+ after remeshing (xxx_IF.obj) | |
| # 6. sideded or occluded parts (xxx_side.obj) | |
| # 7. final reconstructed clothed human (xxx_full.obj) | |
| os.makedirs(osp.join(out_dir, cfg.name, "obj"), exist_ok=True) | |
| in_tensor = { | |
| "smpl_faces": data["smpl_faces"], "image": data["img_icon"].to(device), "mask": | |
| data["img_mask"].to(device) | |
| } | |
| # The optimizer and variables | |
| optimed_pose = data["body_pose"].requires_grad_(True) | |
| optimed_trans = data["trans"].requires_grad_(True) | |
| optimed_betas = data["betas"].requires_grad_(True) | |
| optimed_orient = data["global_orient"].requires_grad_(True) | |
| optimizer_smpl = torch.optim.Adam([optimed_pose, optimed_trans, optimed_betas, optimed_orient], | |
| lr=1e-2, | |
| amsgrad=True) | |
| scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau( | |
| optimizer_smpl, | |
| mode="min", | |
| factor=0.5, | |
| verbose=0, | |
| min_lr=1e-5, | |
| patience=5, | |
| ) | |
| # [result_loop_1, result_loop_2, ...] | |
| per_data_lst = [] | |
| N_body, N_pose = optimed_pose.shape[:2] | |
| smpl_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_smpl_00.obj" | |
| # remove this line if you change the loop_smpl and obtain different SMPL-X fits | |
| if osp.exists(smpl_path): | |
| smpl_verts_lst = [] | |
| smpl_faces_lst = [] | |
| for idx in range(N_body): | |
| smpl_obj = f"{out_dir}/{cfg.name}/obj/{data['name']}_smpl_{idx:02d}.obj" | |
| smpl_mesh = trimesh.load(smpl_obj) | |
| smpl_verts = torch.tensor(smpl_mesh.vertices).to(device).float() | |
| smpl_faces = torch.tensor(smpl_mesh.faces).to(device).long() | |
| smpl_verts_lst.append(smpl_verts) | |
| smpl_faces_lst.append(smpl_faces) | |
| batch_smpl_verts = torch.stack(smpl_verts_lst) | |
| batch_smpl_faces = torch.stack(smpl_faces_lst) | |
| # render optimized mesh as normal [-1,1] | |
| in_tensor["T_normal_F"], in_tensor["T_normal_B"] = dataset.render_normal( | |
| batch_smpl_verts, batch_smpl_faces | |
| ) | |
| with torch.no_grad(): | |
| in_tensor["normal_F"], in_tensor["normal_B"] = normal_net.netG(in_tensor) | |
| in_tensor["smpl_verts"] = batch_smpl_verts * torch.tensor([1., -1., 1.]).to(device) | |
| in_tensor["smpl_faces"] = batch_smpl_faces[:, :, [0, 2, 1]] | |
| else: | |
| # smpl optimization | |
| loop_smpl = tqdm(range(fitting_step)) | |
| for i in loop_smpl: | |
| per_loop_lst = [] | |
| optimizer_smpl.zero_grad() | |
| N_body, N_pose = optimed_pose.shape[:2] | |
| # 6d_rot to rot_mat | |
| optimed_orient_mat = rot6d_to_rotmat(optimed_orient.view(-1, 6)).view(N_body, 1, 3, 3) | |
| optimed_pose_mat = rot6d_to_rotmat(optimed_pose.view(-1, 6)).view(N_body, N_pose, 3, 3) | |
| smpl_verts, smpl_landmarks, smpl_joints = dataset.smpl_model( | |
| shape_params=optimed_betas, | |
| expression_params=tensor2variable(data["exp"], device), | |
| body_pose=optimed_pose_mat, | |
| global_pose=optimed_orient_mat, | |
| jaw_pose=tensor2variable(data["jaw_pose"], device), | |
| left_hand_pose=tensor2variable(data["left_hand_pose"], device), | |
| right_hand_pose=tensor2variable(data["right_hand_pose"], device), | |
| ) | |
| smpl_verts = (smpl_verts + optimed_trans) * data["scale"] | |
| smpl_joints = (smpl_joints + optimed_trans) * data["scale"] * torch.tensor([ | |
| 1.0, 1.0, -1.0 | |
| ]).to(device) | |
| # landmark errors | |
| smpl_joints_3d = ( | |
| smpl_joints[:, dataset.smpl_data.smpl_joint_ids_45_pixie, :] + 1.0 | |
| ) * 0.5 | |
| in_tensor["smpl_joint"] = smpl_joints[:, dataset.smpl_data.smpl_joint_ids_24_pixie, :] | |
| ghum_lmks = data["landmark"][:, SMPLX_object.ghum_smpl_pairs[:, 0], :2].to(device) | |
| ghum_conf = data["landmark"][:, SMPLX_object.ghum_smpl_pairs[:, 0], -1].to(device) | |
| smpl_lmks = smpl_joints_3d[:, SMPLX_object.ghum_smpl_pairs[:, 1], :2] | |
| # render optimized mesh as normal [-1,1] | |
| in_tensor["T_normal_F"], in_tensor["T_normal_B"] = dataset.render_normal( | |
| smpl_verts * torch.tensor([1.0, -1.0, -1.0]).to(device), | |
| in_tensor["smpl_faces"], | |
| ) | |
| T_mask_F, T_mask_B = dataset.render.get_image(type="mask") | |
| with torch.no_grad(): | |
| in_tensor["normal_F"], in_tensor["normal_B"] = normal_net.netG(in_tensor) | |
| diff_F_smpl = torch.abs(in_tensor["T_normal_F"] - in_tensor["normal_F"]) | |
| diff_B_smpl = torch.abs(in_tensor["T_normal_B"] - in_tensor["normal_B"]) | |
| # silhouette loss | |
| smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1) | |
| gt_arr = in_tensor["mask"].repeat(1, 1, 2) | |
| diff_S = torch.abs(smpl_arr - gt_arr) | |
| losses["silhouette"]["value"] = diff_S.mean() | |
| # large cloth_overlap --> big difference between body and cloth mask | |
| # for loose clothing, reply more on landmarks instead of silhouette+normal loss | |
| cloth_overlap = diff_S.sum(dim=[1, 2]) / gt_arr.sum(dim=[1, 2]) | |
| cloth_overlap_flag = cloth_overlap > cfg.cloth_overlap_thres | |
| losses["joint"]["weight"] = [50.0 if flag else 5.0 for flag in cloth_overlap_flag] | |
| # small body_overlap --> large occlusion or out-of-frame | |
| # for highly occluded body, reply only on high-confidence landmarks, no silhouette+normal loss | |
| # BUG: PyTorch3D silhouette renderer generates dilated mask | |
| bg_value = in_tensor["T_normal_F"][0, 0, 0, 0] | |
| smpl_arr_fake = torch.cat([ | |
| in_tensor["T_normal_F"][:, 0].ne(bg_value).float(), | |
| in_tensor["T_normal_B"][:, 0].ne(bg_value).float() | |
| ], | |
| dim=-1) | |
| body_overlap = (gt_arr * smpl_arr_fake.gt(0.0) | |
| ).sum(dim=[1, 2]) / smpl_arr_fake.gt(0.0).sum(dim=[1, 2]) | |
| body_overlap_mask = (gt_arr * smpl_arr_fake).unsqueeze(1) | |
| body_overlap_flag = body_overlap < cfg.body_overlap_thres | |
| losses["normal"]["value"] = ( | |
| diff_F_smpl * body_overlap_mask[..., :512] + | |
| diff_B_smpl * body_overlap_mask[..., 512:] | |
| ).mean() / 2.0 | |
| losses["silhouette"]["weight"] = [0 if flag else 1.0 for flag in body_overlap_flag] | |
| occluded_idx = torch.where(body_overlap_flag)[0] | |
| ghum_conf[occluded_idx] *= ghum_conf[occluded_idx] > 0.95 | |
| losses["joint"]["value"] = (torch.norm(ghum_lmks - smpl_lmks, dim=2) * | |
| ghum_conf).mean(dim=1) | |
| # Weighted sum of the losses | |
| smpl_loss = 0.0 | |
| pbar_desc = "Body Fitting -- " | |
| for k in ["normal", "silhouette", "joint"]: | |
| per_loop_loss = (losses[k]["value"] * | |
| torch.tensor(losses[k]["weight"]).to(device)).mean() | |
| pbar_desc += f"{k}: {per_loop_loss:.3f} | " | |
| smpl_loss += per_loop_loss | |
| pbar_desc += f"Total: {smpl_loss:.3f}" | |
| loose_str = ''.join([str(j) for j in cloth_overlap_flag.int().tolist()]) | |
| occlude_str = ''.join([str(j) for j in body_overlap_flag.int().tolist()]) | |
| pbar_desc += colored(f"| loose:{loose_str}, occluded:{occlude_str}", "yellow") | |
| loop_smpl.set_description(pbar_desc) | |
| # save intermediate results | |
| if (i == fitting_step - 1): | |
| per_loop_lst.extend([ | |
| in_tensor["image"], | |
| in_tensor["T_normal_F"], | |
| in_tensor["normal_F"], | |
| diff_S[:, :, :512].unsqueeze(1).repeat(1, 3, 1, 1), | |
| ]) | |
| per_loop_lst.extend([ | |
| in_tensor["image"], | |
| in_tensor["T_normal_B"], | |
| in_tensor["normal_B"], | |
| diff_S[:, :, 512:].unsqueeze(1).repeat(1, 3, 1, 1), | |
| ]) | |
| per_data_lst.append( | |
| get_optim_grid_image(per_loop_lst, None, nrow=N_body * 2, type="smpl") | |
| ) | |
| smpl_loss.backward() | |
| optimizer_smpl.step() | |
| scheduler_smpl.step(smpl_loss) | |
| in_tensor["smpl_verts"] = smpl_verts * torch.tensor([1.0, 1.0, -1.0]).to(device) | |
| in_tensor["smpl_faces"] = in_tensor["smpl_faces"][:, :, [0, 2, 1]] | |
| per_data_lst[-1].save(osp.join(out_dir, cfg.name, f"png/{data['name']}_smpl.png")) | |
| img_crop_path = osp.join(out_dir, cfg.name, "png", f"{data['name']}_crop.png") | |
| torchvision.utils.save_image( | |
| torch.cat([ | |
| data["img_crop"][:, :3], (in_tensor['normal_F'].detach().cpu() + 1.0) * 0.5, | |
| (in_tensor['normal_B'].detach().cpu() + 1.0) * 0.5 | |
| ], | |
| dim=3), img_crop_path | |
| ) | |
| rgb_norm_F = blend_rgb_norm(in_tensor["normal_F"], data) | |
| rgb_norm_B = blend_rgb_norm(in_tensor["normal_B"], data) | |
| img_overlap_path = osp.join(out_dir, cfg.name, f"png/{data['name']}_overlap.png") | |
| torchvision.utils.save_image( | |
| torch.cat([data["img_raw"], rgb_norm_F, rgb_norm_B], dim=-1) / 255., img_overlap_path | |
| ) | |
| smpl_obj_lst = [] | |
| for idx in range(N_body): | |
| smpl_obj = trimesh.Trimesh( | |
| in_tensor["smpl_verts"].detach().cpu()[idx] * torch.tensor([1.0, -1.0, 1.0]), | |
| in_tensor["smpl_faces"].detach().cpu()[0][:, [0, 2, 1]], | |
| process=False, | |
| maintains_order=True, | |
| ) | |
| smpl_obj_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_smpl_{idx:02d}.obj" | |
| if not osp.exists(smpl_obj_path): | |
| smpl_obj.export(smpl_obj_path) | |
| smpl_obj.export(smpl_obj_path.replace(".obj", ".glb")) | |
| smpl_info = { | |
| "betas": | |
| optimed_betas[idx].detach().cpu().unsqueeze(0), | |
| "body_pose": | |
| rotation_matrix_to_angle_axis(optimed_pose_mat[idx].detach()).cpu().unsqueeze(0), | |
| "global_orient": | |
| rotation_matrix_to_angle_axis(optimed_orient_mat[idx].detach()).cpu().unsqueeze(0), | |
| "transl": | |
| optimed_trans[idx].detach().cpu(), | |
| "expression": | |
| data["exp"][idx].cpu().unsqueeze(0), | |
| "jaw_pose": | |
| rotation_matrix_to_angle_axis(data["jaw_pose"][idx]).cpu().unsqueeze(0), | |
| "left_hand_pose": | |
| rotation_matrix_to_angle_axis(data["left_hand_pose"][idx]).cpu().unsqueeze(0), | |
| "right_hand_pose": | |
| rotation_matrix_to_angle_axis(data["right_hand_pose"][idx]).cpu().unsqueeze(0), | |
| "scale": | |
| data["scale"][idx].cpu(), | |
| } | |
| np.save( | |
| smpl_obj_path.replace(".obj", ".npy"), | |
| smpl_info, | |
| allow_pickle=True, | |
| ) | |
| smpl_obj_lst.append(smpl_obj) | |
| del optimizer_smpl | |
| del optimed_betas | |
| del optimed_orient | |
| del optimed_pose | |
| del optimed_trans | |
| torch.cuda.empty_cache() | |
| # ------------------------------------------------------------------------------------------------------------------ | |
| # clothing refinement | |
| per_data_lst = [] | |
| batch_smpl_verts = in_tensor["smpl_verts"].detach() * torch.tensor([1.0, -1.0, 1.0], | |
| device=device) | |
| batch_smpl_faces = in_tensor["smpl_faces"].detach()[:, :, [0, 2, 1]] | |
| in_tensor["depth_F"], in_tensor["depth_B"] = dataset.render_depth( | |
| batch_smpl_verts, batch_smpl_faces | |
| ) | |
| per_loop_lst = [] | |
| in_tensor["BNI_verts"] = [] | |
| in_tensor["BNI_faces"] = [] | |
| in_tensor["body_verts"] = [] | |
| in_tensor["body_faces"] = [] | |
| for idx in range(N_body): | |
| final_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_full.obj" | |
| side_mesh = smpl_obj_lst[idx].copy() | |
| face_mesh = smpl_obj_lst[idx].copy() | |
| hand_mesh = smpl_obj_lst[idx].copy() | |
| smplx_mesh = smpl_obj_lst[idx].copy() | |
| # save normals, depths and masks | |
| BNI_dict = save_normal_tensor( | |
| in_tensor, | |
| idx, | |
| osp.join(out_dir, cfg.name, f"BNI/{data['name']}_{idx}"), | |
| cfg.bni.thickness, | |
| ) | |
| # BNI process | |
| BNI_object = BNI( | |
| dir_path=osp.join(out_dir, cfg.name, "BNI"), | |
| name=data["name"], | |
| BNI_dict=BNI_dict, | |
| cfg=cfg.bni, | |
| device=device | |
| ) | |
| BNI_object.extract_surface(False) | |
| in_tensor["body_verts"].append(torch.tensor(smpl_obj_lst[idx].vertices).float()) | |
| in_tensor["body_faces"].append(torch.tensor(smpl_obj_lst[idx].faces).long()) | |
| # requires shape completion when low overlap | |
| # replace SMPL by completed mesh as side_mesh | |
| if cfg.bni.use_ifnet: | |
| side_mesh_path = f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_IF.obj" | |
| side_mesh = apply_face_mask(side_mesh, ~SMPLX_object.smplx_eyeball_fid_mask) | |
| # mesh completion via IF-net | |
| in_tensor.update( | |
| dataset.depth_to_voxel({ | |
| "depth_F": BNI_object.F_depth.unsqueeze(0), "depth_B": | |
| BNI_object.B_depth.unsqueeze(0) | |
| }) | |
| ) | |
| occupancies = VoxelGrid.from_mesh(side_mesh, cfg.vol_res, loc=[ | |
| 0, | |
| ] * 3, scale=2.0).data.transpose(2, 1, 0) | |
| occupancies = np.flip(occupancies, axis=1) | |
| in_tensor["body_voxels"] = torch.tensor(occupancies.copy() | |
| ).float().unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| sdf = ifnet.reconEngine(netG=ifnet.netG, batch=in_tensor) | |
| verts_IF, faces_IF = ifnet.reconEngine.export_mesh(sdf) | |
| if ifnet.clean_mesh_flag: | |
| verts_IF, faces_IF = clean_mesh(verts_IF, faces_IF) | |
| side_mesh = trimesh.Trimesh(verts_IF, faces_IF) | |
| side_mesh = remesh_laplacian(side_mesh, side_mesh_path) | |
| else: | |
| side_mesh = apply_vertex_mask( | |
| side_mesh, | |
| ( | |
| SMPLX_object.front_flame_vertex_mask + SMPLX_object.smplx_mano_vertex_mask + | |
| SMPLX_object.eyeball_vertex_mask | |
| ).eq(0).float(), | |
| ) | |
| #register side_mesh to BNI surfaces | |
| side_mesh = Meshes( | |
| verts=[torch.tensor(side_mesh.vertices).float()], | |
| faces=[torch.tensor(side_mesh.faces).long()], | |
| ).to(device) | |
| sm = SubdivideMeshes(side_mesh) | |
| side_mesh = register(BNI_object.F_B_trimesh, sm(side_mesh), device) | |
| side_verts = torch.tensor(side_mesh.vertices).float().to(device) | |
| side_faces = torch.tensor(side_mesh.faces).long().to(device) | |
| # Possion Fusion between SMPLX and BNI | |
| # 1. keep the faces invisible to front+back cameras | |
| # 2. keep the front-FLAME+MANO faces | |
| # 3. remove eyeball faces | |
| # export intermediate meshes | |
| BNI_object.F_B_trimesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_BNI.obj") | |
| full_lst = [] | |
| if "face" in cfg.bni.use_smpl: | |
| # only face | |
| face_mesh = apply_vertex_mask(face_mesh, SMPLX_object.front_flame_vertex_mask) | |
| face_mesh.vertices = face_mesh.vertices - np.array([0, 0, cfg.bni.thickness]) | |
| # remove face neighbor triangles | |
| BNI_object.F_B_trimesh = part_removal( | |
| BNI_object.F_B_trimesh, | |
| face_mesh, | |
| cfg.bni.face_thres, | |
| device, | |
| smplx_mesh, | |
| region="face" | |
| ) | |
| side_mesh = part_removal( | |
| side_mesh, face_mesh, cfg.bni.face_thres, device, smplx_mesh, region="face" | |
| ) | |
| face_mesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_face.obj") | |
| full_lst += [face_mesh] | |
| if "hand" in cfg.bni.use_smpl and (True in data['hands_visibility'][idx]): | |
| hand_mask = torch.zeros(SMPLX_object.smplx_verts.shape[0], ) | |
| if data['hands_visibility'][idx][0]: | |
| hand_mask.index_fill_( | |
| 0, torch.tensor(SMPLX_object.smplx_mano_vid_dict["left_hand"]), 1.0 | |
| ) | |
| if data['hands_visibility'][idx][1]: | |
| hand_mask.index_fill_( | |
| 0, torch.tensor(SMPLX_object.smplx_mano_vid_dict["right_hand"]), 1.0 | |
| ) | |
| # only hands | |
| hand_mesh = apply_vertex_mask(hand_mesh, hand_mask) | |
| # remove hand neighbor triangles | |
| BNI_object.F_B_trimesh = part_removal( | |
| BNI_object.F_B_trimesh, | |
| hand_mesh, | |
| cfg.bni.hand_thres, | |
| device, | |
| smplx_mesh, | |
| region="hand" | |
| ) | |
| side_mesh = part_removal( | |
| side_mesh, hand_mesh, cfg.bni.hand_thres, device, smplx_mesh, region="hand" | |
| ) | |
| hand_mesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_hand.obj") | |
| full_lst += [hand_mesh] | |
| full_lst += [BNI_object.F_B_trimesh] | |
| # initial side_mesh could be SMPLX or IF-net | |
| side_mesh = part_removal( | |
| side_mesh, sum(full_lst), 2e-2, device, smplx_mesh, region="", clean=False | |
| ) | |
| full_lst += [side_mesh] | |
| # # export intermediate meshes | |
| BNI_object.F_B_trimesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_BNI.obj") | |
| side_mesh.export(f"{out_dir}/{cfg.name}/obj/{data['name']}_{idx}_side.obj") | |
| final_mesh = poisson( | |
| sum(full_lst), | |
| final_path, | |
| cfg.bni.poisson_depth, | |
| ) | |
| print( | |
| colored(f"\n Poisson completion to {Format.start} {final_path} {Format.end}", "yellow") | |
| ) | |
| dataset.render.load_meshes(final_mesh.vertices, final_mesh.faces) | |
| rotate_recon_lst = dataset.render.get_image(cam_type="four") | |
| per_loop_lst.extend([in_tensor['image'][idx:idx + 1]] + rotate_recon_lst) | |
| if cfg.bni.texture_src == 'image': | |
| # coloring the final mesh (front: RGB pixels, back: normal colors) | |
| final_colors = query_color( | |
| torch.tensor(final_mesh.vertices).float(), | |
| torch.tensor(final_mesh.faces).long(), | |
| in_tensor["image"][idx:idx + 1], | |
| device=device, | |
| ) | |
| final_mesh.visual.vertex_colors = final_colors | |
| final_mesh.export(final_path) | |
| final_mesh.export(final_path.replace(".obj", ".glb")) | |
| elif cfg.bni.texture_src == 'SD': | |
| # !TODO: add texture from Stable Diffusion | |
| pass | |
| if len(per_loop_lst) > 0: | |
| per_data_lst.append(get_optim_grid_image(per_loop_lst, None, nrow=5, type="cloth")) | |
| per_data_lst[-1].save(osp.join(out_dir, cfg.name, f"png/{data['name']}_cloth.png")) | |
| # for video rendering | |
| in_tensor["BNI_verts"].append(torch.tensor(final_mesh.vertices).float()) | |
| in_tensor["BNI_faces"].append(torch.tensor(final_mesh.faces).long()) | |
| os.makedirs(osp.join(out_dir, cfg.name, "vid"), exist_ok=True) | |
| in_tensor["uncrop_param"] = data["uncrop_param"] | |
| in_tensor["img_raw"] = data["img_raw"] | |
| torch.save(in_tensor, osp.join(out_dir, cfg.name, f"vid/{data['name']}_in_tensor.pt")) | |
| smpl_glb_path = smpl_obj_path.replace(".obj", ".glb") | |
| # smpl_npy_path = smpl_obj_path.replace(".obj", ".npy") | |
| refine_obj_path = final_path | |
| refine_glb_path = final_path.replace(".obj", ".glb") | |
| overlap_path = img_overlap_path | |
| vis_tensor_path = osp.join(out_dir, cfg.name, f"vid/{data['name']}_in_tensor.pt") | |
| # clean all the variables | |
| for element in dir(): | |
| if 'path' not in element: | |
| del locals()[element] | |
| import gc | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| return [ | |
| smpl_glb_path, refine_glb_path, refine_obj_path, overlap_path, vis_tensor_path | |
| ] | |