File size: 6,280 Bytes
da48dbe
 
 
 
 
c3d3e4a
 
 
 
 
 
da48dbe
c3d3e4a
da48dbe
 
c3d3e4a
 
 
 
 
da48dbe
c3d3e4a
 
 
 
 
da48dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d3e4a
da48dbe
 
 
 
c3d3e4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da48dbe
c3d3e4a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import trimesh
import torch
import os.path as osp
import lib.smplx as smplx
from pytorch3d.ops import SubdivideMeshes
from pytorch3d.structures import Meshes

from lib.smplx.lbs import general_lbs
from lib.dataset.mesh_util import keep_largest, poisson
from scipy.spatial import cKDTree
from lib.dataset.mesh_util import SMPLX
from lib.common.local_affine import register

smplx_container = SMPLX()
device = torch.device("cuda:0")

prefix = "./results/github/econ/obj/304e9c4798a8c3967de7c74c24ef2e38"
smpl_path = f"{prefix}_smpl_00.npy"
econ_path = f"{prefix}_0_full.obj"

smplx_param = np.load(smpl_path, allow_pickle=True).item()
econ_obj = trimesh.load(econ_path)
econ_obj.vertices *= np.array([1.0, -1.0, -1.0])
econ_obj.vertices /= smplx_param["scale"].cpu().numpy()
econ_obj.vertices -= smplx_param["transl"].cpu().numpy()

for key in smplx_param.keys():
    smplx_param[key] = smplx_param[key].cpu().view(1, -1)
    # print(key, smplx_param[key].device, smplx_param[key].shape)

smpl_model = smplx.create(
    smplx_container.model_dir,
    model_type="smplx",
    gender="neutral",
    age="adult",
    use_face_contour=False,
    use_pca=False,
    num_betas=200,
    num_expression_coeffs=50,
    ext='pkl')

smpl_out = smpl_model(
    body_pose=smplx_param["body_pose"],
    global_orient=smplx_param["global_orient"],
    betas=smplx_param["betas"],
    expression=smplx_param["expression"],
    jaw_pose=smplx_param["jaw_pose"],
    left_hand_pose=smplx_param["left_hand_pose"],
    right_hand_pose=smplx_param["right_hand_pose"],
    return_verts=True,
    return_full_pose=True,
    return_joint_transformation=True,
    return_vertex_transformation=True)

smpl_verts = smpl_out.vertices.detach()[0]
smpl_tree = cKDTree(smpl_verts.cpu().numpy())
dist, idx = smpl_tree.query(econ_obj.vertices, k=5)

if not osp.exists(f"{prefix}_econ_cano.obj") or not osp.exists(f"{prefix}_smpl_cano.obj"):

    # canonicalize for ECON
    econ_verts = torch.tensor(econ_obj.vertices).float()
    inv_mat = torch.inverse(smpl_out.vertex_transformation.detach()[0][idx[:, 0]])
    homo_coord = torch.ones_like(econ_verts)[..., :1]
    econ_cano_verts = inv_mat @ torch.cat([econ_verts, homo_coord], dim=1).unsqueeze(-1)
    econ_cano_verts = econ_cano_verts[:, :3, 0].cpu()
    econ_cano = trimesh.Trimesh(econ_cano_verts, econ_obj.faces)

    # canonicalize for SMPL-X
    inv_mat = torch.inverse(smpl_out.vertex_transformation.detach()[0])
    homo_coord = torch.ones_like(smpl_verts)[..., :1]
    smpl_cano_verts = inv_mat @ torch.cat([smpl_verts, homo_coord], dim=1).unsqueeze(-1)
    smpl_cano_verts = smpl_cano_verts[:, :3, 0].cpu()
    smpl_cano = trimesh.Trimesh(smpl_cano_verts, smpl_model.faces, maintain_orders=True, process=False)
    smpl_cano.export(f"{prefix}_smpl_cano.obj")

    # remove hands from ECON for next registeration
    econ_cano_body = econ_cano.copy()
    mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid)
    econ_cano_body.update_faces(mano_mask[econ_cano.faces].all(axis=1))
    econ_cano_body.remove_unreferenced_vertices()
    econ_cano_body = keep_largest(econ_cano_body)

    # remove SMPL-X hand and face
    register_mask = ~np.isin(
        np.arange(smpl_cano_verts.shape[0]),
        np.concatenate([smplx_container.smplx_mano_vid, smplx_container.smplx_front_flame_vid]))
    register_mask *= ~smplx_container.eyeball_vertex_mask.bool().numpy()
    smpl_cano_body = smpl_cano.copy()
    smpl_cano_body.update_faces(register_mask[smpl_cano.faces].all(axis=1))
    smpl_cano_body.remove_unreferenced_vertices()
    smpl_cano_body = keep_largest(smpl_cano_body)

    # upsample the smpl_cano_body and do registeration
    smpl_cano_body = Meshes(
        verts=[torch.tensor(smpl_cano_body.vertices).float()],
        faces=[torch.tensor(smpl_cano_body.faces).long()],
    ).to(device)
    sm = SubdivideMeshes(smpl_cano_body)
    smpl_cano_body = register(econ_cano_body, sm(smpl_cano_body), device)

    # remove over-streched+hand faces from ECON
    econ_cano_body = econ_cano.copy()
    edge_before = np.sqrt(
        ((econ_obj.vertices[econ_cano.edges[:, 0]] - econ_obj.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1))
    edge_after = np.sqrt(
        ((econ_cano.vertices[econ_cano.edges[:, 0]] - econ_cano.vertices[econ_cano.edges[:, 1]])**2).sum(axis=1))
    edge_diff = edge_after / edge_before.clip(1e-2)
    streched_mask = np.unique(econ_cano.edges[edge_diff > 6])
    mano_mask = ~np.isin(idx[:, 0], smplx_container.smplx_mano_vid)
    mano_mask[streched_mask] = False
    econ_cano_body.update_faces(mano_mask[econ_cano.faces].all(axis=1))
    econ_cano_body.remove_unreferenced_vertices()

    # stitch the registered SMPL-X body and floating hands to ECON
    econ_cano_tree = cKDTree(econ_cano.vertices)
    dist, idx = econ_cano_tree.query(smpl_cano_body.vertices, k=1)
    smpl_cano_body.update_faces((dist > 0.02)[smpl_cano_body.faces].all(axis=1))
    smpl_cano_body.remove_unreferenced_vertices()

    smpl_hand = smpl_cano.copy()
    smpl_hand.update_faces(smplx_container.mano_vertex_mask.numpy()[smpl_hand.faces].all(axis=1))
    smpl_hand.remove_unreferenced_vertices()
    econ_cano = sum([smpl_hand, smpl_cano_body, econ_cano_body])
    econ_cano = poisson(econ_cano, f"{prefix}_econ_cano.obj")
else:
    econ_cano = trimesh.load(f"{prefix}_econ_cano.obj")
    smpl_cano = trimesh.load(f"{prefix}_smpl_cano.obj", maintain_orders=True, process=False)

smpl_tree = cKDTree(smpl_cano.vertices)
dist, idx = smpl_tree.query(econ_cano.vertices, k=2)
knn_weights = np.exp(-dist**2)
knn_weights /= knn_weights.sum(axis=1, keepdims=True)
econ_J_regressor = (smpl_model.J_regressor[:, idx] * knn_weights[None]).sum(axis=-1)
econ_lbs_weights = (smpl_model.lbs_weights.T[:, idx] * knn_weights[None]).sum(axis=-1).T
econ_J_regressor /= econ_J_regressor.sum(axis=1, keepdims=True)
econ_lbs_weights /= econ_lbs_weights.sum(axis=1, keepdims=True)

posed_econ_verts, _ = general_lbs(
    pose=smpl_out.full_pose,
    v_template=torch.tensor(econ_cano.vertices).unsqueeze(0),
    J_regressor=econ_J_regressor,
    parents=smpl_model.parents,
    lbs_weights=econ_lbs_weights)

econ_pose = trimesh.Trimesh(posed_econ_verts[0].detach(), econ_cano.faces)
econ_pose.export(f"{prefix}_econ_pose.obj")