from typing import TYPE_CHECKING, Dict, Generator, List import gradio as gr from ...train import export_model from ..common import get_save_dir from ..locales import ALERTS if TYPE_CHECKING: from gradio.components import Component from ..engine import Engine GPTQ_BITS = ["8", "4", "3", "2"] def save_model( lang: str, model_name: str, model_path: str, adapter_path: List[str], finetuning_type: str, template: str, max_shard_size: int, export_quantization_bit: int, export_quantization_dataset: str, export_dir: str, ) -> Generator[str, None, None]: error = "" if not model_name: error = ALERTS["err_no_model"][lang] elif not model_path: error = ALERTS["err_no_path"][lang] elif not export_dir: error = ALERTS["err_no_export_dir"][lang] elif export_quantization_bit in GPTQ_BITS and not export_quantization_dataset: error = ALERTS["err_no_dataset"][lang] elif export_quantization_bit not in GPTQ_BITS and not adapter_path: error = ALERTS["err_no_adapter"][lang] if error: gr.Warning(error) yield error return if adapter_path: adapter_name_or_path = ",".join( [get_save_dir(model_name, finetuning_type, adapter) for adapter in adapter_path] ) else: adapter_name_or_path = None args = dict( model_name_or_path=model_path, adapter_name_or_path=adapter_name_or_path, finetuning_type=finetuning_type, template=template, export_dir=export_dir, export_size=max_shard_size, export_quantization_bit=int(export_quantization_bit) if export_quantization_bit in GPTQ_BITS else None, export_quantization_dataset=export_quantization_dataset, ) yield ALERTS["info_exporting"][lang] export_model(args) yield ALERTS["info_exported"][lang] def create_export_tab(engine: "Engine") -> Dict[str, "Component"]: with gr.Row(): max_shard_size = gr.Slider(value=1, minimum=1, maximum=100) export_quantization_bit = gr.Dropdown(choices=["none", "8", "4", "3", "2"], value="none") export_quantization_dataset = gr.Textbox(value="data/c4_demo.json") export_dir = gr.Textbox() export_btn = gr.Button() info_box = gr.Textbox(show_label=False, interactive=False) export_btn.click( save_model, [ engine.manager.get_elem_by_name("top.lang"), engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.model_path"), engine.manager.get_elem_by_name("top.adapter_path"), engine.manager.get_elem_by_name("top.finetuning_type"), engine.manager.get_elem_by_name("top.template"), max_shard_size, export_quantization_bit, export_quantization_dataset, export_dir, ], [info_box], ) return dict( max_shard_size=max_shard_size, export_quantization_bit=export_quantization_bit, export_quantization_dataset=export_quantization_dataset, export_dir=export_dir, export_btn=export_btn, info_box=info_box, )