import inspect from typing import TYPE_CHECKING, Any, Dict, List import torch from transformers import PreTrainedModel from transformers.utils import cached_file from ..extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME from ..extras.logging import get_logger from ..extras.misc import get_current_device if TYPE_CHECKING: from transformers import PretrainedConfig, PreTrainedTokenizer from ..hparams import DataArguments, FinetuningArguments, ModelArguments logger = get_logger(__name__) def dispatch_model(model: "PreTrainedModel") -> "PreTrainedModel": r""" Dispatches a pre-trained model to GPUs with balanced memory when the GPU is available. Borrowed from: https://github.com/huggingface/transformers/blob/v4.36.2/src/transformers/modeling_utils.py#L3570 """ if getattr(model, "quantization_method", None): # already set on current device return model if ( torch.cuda.device_count() > 1 and isinstance(model, PreTrainedModel) and model._no_split_modules is not None and model.config.model_type != "chatglm" ): from accelerate import dispatch_model from accelerate.utils import get_balanced_memory, infer_auto_device_map kwargs = {"dtype": model.dtype, "no_split_module_classes": model._get_no_split_modules("auto")} max_memory = get_balanced_memory(model, **kwargs) # Make sure tied weights are tied before creating the device map. model.tie_weights() device_map = infer_auto_device_map(model, max_memory=max_memory, **kwargs) device_map_kwargs = {"device_map": device_map} if "skip_keys" in inspect.signature(dispatch_model).parameters: device_map_kwargs["skip_keys"] = model._skip_keys_device_placement return dispatch_model(model, **device_map_kwargs) else: return model.to(device=get_current_device()) def find_all_linear_modules(model: "PreTrainedModel") -> List[str]: r""" Finds all available modules to apply lora. """ quantization_method = getattr(model, "quantization_method", None) if quantization_method is None: linear_cls = torch.nn.Linear elif quantization_method == "bitsandbytes": import bitsandbytes as bnb linear_cls = bnb.nn.Linear4bit if getattr(model, "is_loaded_in_4bit", False) else bnb.nn.Linear8bitLt else: raise ValueError("Finding linear modules for {} models is not supported.".format(quantization_method)) output_layer_names = ["lm_head"] if model.config.model_type == "chatglm": output_layer_names.append("output_layer") module_names = set() for name, module in model.named_modules(): if isinstance(module, linear_cls) and not any(output_layer in name for output_layer in output_layer_names): module_names.add(name.split(".")[-1]) logger.info("Found linear modules: {}".format(",".join(module_names))) return list(module_names) def get_modelcard_args( model_args: "ModelArguments", data_args: "DataArguments", finetuning_args: "FinetuningArguments" ) -> Dict[str, Any]: return { "tasks": "text-generation", "license": "other", "finetuned_from": model_args.model_name_or_path, "dataset": [dataset.strip() for dataset in data_args.dataset.split(",")], "tags": ["llama-factory"] + (["lora"] if finetuning_args.finetuning_type == "lora" else []), } def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]: r""" Loads value head parameters from Hugging Face Hub or local disk. Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`. """ kwargs = {"path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token} try: from safetensors import safe_open vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs) with safe_open(vhead_file, framework="pt", device="cpu") as f: return {key: f.get_tensor(key) for key in f.keys()} except Exception as err: logger.info("Failed to load {}: {}".format(V_HEAD_SAFE_WEIGHTS_NAME, str(err))) try: vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs) return torch.load(vhead_file, map_location="cpu") except Exception as err: logger.info("Failed to load {}: {}".format(V_HEAD_WEIGHTS_NAME, str(err))) logger.info("Provided path ({}) does not contain value head weights.".format(path_or_repo_id)) logger.info("Ignore these messages if you are not resuming the training of a value head model.") return None def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer"): if "AutoConfig" in getattr(config, "auto_map", {}): config.__class__.register_for_auto_class() if "AutoModelForCausalLM" in getattr(config, "auto_map", {}): model.__class__.register_for_auto_class() if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}): tokenizer.__class__.register_for_auto_class()