from typing import TYPE_CHECKING, Optional, Tuple from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer from transformers.integrations import is_deepspeed_zero3_enabled from transformers.utils.versions import require_version from trl import AutoModelForCausalLMWithValueHead from ..extras.logging import get_logger from ..extras.misc import count_parameters, get_current_device, try_download_model_from_ms from .adapter import init_adapter from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model from .utils import load_valuehead_params, register_autoclass if TYPE_CHECKING: from transformers import PreTrainedModel, PreTrainedTokenizer from ..hparams import FinetuningArguments, ModelArguments logger = get_logger(__name__) require_version("transformers>=4.36.2", "To fix: pip install transformers>=4.36.2") require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3") require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0") require_version("peft>=0.7.0", "To fix: pip install peft>=0.7.0") require_version("trl>=0.7.6", "To fix: pip install trl>=0.7.6") def load_model_and_tokenizer( model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: Optional[bool] = False, add_valuehead: Optional[bool] = False, ) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]: r""" Loads pretrained model and tokenizer. Support both training and inference. """ try_download_model_from_ms(model_args) config_kwargs = { "trust_remote_code": True, "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "token": model_args.hf_hub_token, } tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=model_args.use_fast_tokenizer, split_special_tokens=model_args.split_special_tokens, padding_side="right", **config_kwargs, ) patch_tokenizer(tokenizer) config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) patch_config(config, tokenizer, model_args, config_kwargs, is_trainable) model = None if is_trainable and model_args.use_unsloth: require_version("unsloth", "Follow the instructions at: https://github.com/unslothai/unsloth") from unsloth import FastLlamaModel, FastMistralModel # type: ignore unsloth_kwargs = { "model_name": model_args.model_name_or_path, "max_seq_length": model_args.model_max_length, "dtype": model_args.compute_dtype, "load_in_4bit": model_args.quantization_bit == 4, "token": model_args.hf_hub_token, "device_map": get_current_device(), "rope_scaling": getattr(config, "rope_scaling", None), } if getattr(config, "model_type", None) == "llama": model, _ = FastLlamaModel.from_pretrained(**unsloth_kwargs) elif getattr(config, "model_type", None) == "mistral": model, _ = FastMistralModel.from_pretrained(**unsloth_kwargs) else: logger.warning("Unsloth does not support model type {}.".format(getattr(config, "model_type", None))) model_args.use_unsloth = False if model_args.adapter_name_or_path: model_args.adapter_name_or_path = None logger.warning("Unsloth does not support loading adapters.") if model is None: model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, config=config, torch_dtype=model_args.compute_dtype, low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()), **config_kwargs, ) patch_model(model, tokenizer, model_args, is_trainable) register_autoclass(config, model, tokenizer) model = init_adapter(model, model_args, finetuning_args, is_trainable) if add_valuehead: model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model) patch_valuehead_model(model) if model_args.adapter_name_or_path is not None: vhead_path = model_args.adapter_name_or_path[-1] else: vhead_path = model_args.model_name_or_path vhead_params = load_valuehead_params(vhead_path, model_args) if vhead_params is not None: model.load_state_dict(vhead_params, strict=False) logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path)) if not is_trainable: model.requires_grad_(False) model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model model.eval() else: model.train() trainable_params, all_param = count_parameters(model) logger.info( "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format( trainable_params, all_param, 100 * trainable_params / all_param ) ) if not is_trainable: logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.") return model, tokenizer