Spaces:
Runtime error
Runtime error
import json | |
import os | |
from datetime import datetime | |
from typing import TYPE_CHECKING, Any, Dict | |
import gradio as gr | |
from ..extras.packages import is_matplotlib_available | |
from ..extras.ploting import smooth | |
from .common import get_save_dir | |
from .locales import ALERTS | |
if TYPE_CHECKING: | |
from ..extras.callbacks import LogCallback | |
if is_matplotlib_available(): | |
import matplotlib.figure | |
import matplotlib.pyplot as plt | |
def update_process_bar(callback: "LogCallback") -> Dict[str, Any]: | |
if not callback.max_steps: | |
return gr.update(visible=False) | |
percentage = round(100 * callback.cur_steps / callback.max_steps, 0) if callback.max_steps != 0 else 100.0 | |
label = "Running {:d}/{:d}: {} < {}".format( | |
callback.cur_steps, callback.max_steps, callback.elapsed_time, callback.remaining_time | |
) | |
return gr.update(label=label, value=percentage, visible=True) | |
def get_time() -> str: | |
return datetime.now().strftime("%Y-%m-%d-%H-%M-%S") | |
def can_quantize(finetuning_type: str) -> Dict[str, Any]: | |
if finetuning_type != "lora": | |
return gr.update(value="None", interactive=False) | |
else: | |
return gr.update(interactive=True) | |
def check_json_schema(text: str, lang: str) -> None: | |
try: | |
tools = json.loads(text) | |
for tool in tools: | |
assert "name" in tool | |
except AssertionError: | |
gr.Warning(ALERTS["err_tool_name"][lang]) | |
except json.JSONDecodeError: | |
gr.Warning(ALERTS["err_json_schema"][lang]) | |
def gen_cmd(args: Dict[str, Any]) -> str: | |
args.pop("disable_tqdm", None) | |
args["plot_loss"] = args.get("do_train", None) | |
current_devices = os.environ.get("CUDA_VISIBLE_DEVICES", "0") | |
cmd_lines = ["CUDA_VISIBLE_DEVICES={} python src/train_bash.py ".format(current_devices)] | |
for k, v in args.items(): | |
if v is not None and v is not False and v != "": | |
cmd_lines.append(" --{} {} ".format(k, str(v))) | |
cmd_text = "\\\n".join(cmd_lines) | |
cmd_text = "```bash\n{}\n```".format(cmd_text) | |
return cmd_text | |
def get_eval_results(path: os.PathLike) -> str: | |
with open(path, "r", encoding="utf-8") as f: | |
result = json.dumps(json.load(f), indent=4) | |
return "```json\n{}\n```\n".format(result) | |
def gen_plot(base_model: str, finetuning_type: str, output_dir: str) -> "matplotlib.figure.Figure": | |
if not base_model: | |
return | |
log_file = get_save_dir(base_model, finetuning_type, output_dir, "trainer_log.jsonl") | |
if not os.path.isfile(log_file): | |
return | |
plt.close("all") | |
fig = plt.figure() | |
ax = fig.add_subplot(111) | |
steps, losses = [], [] | |
with open(log_file, "r", encoding="utf-8") as f: | |
for line in f: | |
log_info = json.loads(line) | |
if log_info.get("loss", None): | |
steps.append(log_info["current_steps"]) | |
losses.append(log_info["loss"]) | |
if len(losses) == 0: | |
return None | |
ax.plot(steps, losses, alpha=0.4, label="original") | |
ax.plot(steps, smooth(losses), label="smoothed") | |
ax.legend() | |
ax.set_xlabel("step") | |
ax.set_ylabel("loss") | |
return fig | |