Spaces:
Runtime error
Runtime error
from typing import TYPE_CHECKING, Optional, Union | |
import torch | |
from ..extras.logging import get_logger | |
from ..hparams import FinetuningArguments, ModelArguments | |
from ..model import get_modelcard_args, load_model_and_tokenizer, load_valuehead_params | |
if TYPE_CHECKING: | |
from transformers import Seq2SeqTrainingArguments, Trainer | |
from transformers.modeling_utils import PreTrainedModel | |
from trl import AutoModelForCausalLMWithValueHead | |
from ..hparams import DataArguments | |
logger = get_logger(__name__) | |
def create_modelcard_and_push( | |
trainer: "Trainer", | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
finetuning_args: "FinetuningArguments", | |
) -> None: | |
if training_args.do_train: | |
if training_args.push_to_hub: | |
trainer.push_to_hub(**get_modelcard_args(model_args, data_args, finetuning_args)) | |
return | |
try: | |
trainer.create_model_card(**get_modelcard_args(model_args, data_args, finetuning_args)) | |
except Exception as err: | |
logger.warning("Failed to create model card: {}".format(str(err))) | |
def create_ref_model( | |
model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: Optional[bool] = False | |
) -> Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]: | |
r""" | |
Creates reference model for PPO/DPO training. Evaluation mode is not supported. | |
The valuehead parameter is randomly initialized since it is useless for PPO training. | |
""" | |
if finetuning_args.ref_model is not None: | |
ref_model_args_dict = model_args.to_dict() | |
ref_model_args_dict.update( | |
dict( | |
model_name_or_path=finetuning_args.ref_model, | |
adapter_name_or_path=finetuning_args.ref_model_adapters, | |
quantization_bit=finetuning_args.ref_model_quantization_bit, | |
) | |
) | |
ref_model_args = ModelArguments(**ref_model_args_dict) | |
ref_finetuning_args = FinetuningArguments(finetuning_type="lora") | |
ref_model, _ = load_model_and_tokenizer( | |
ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead | |
) | |
logger.info("Created reference model from {}".format(finetuning_args.ref_model)) | |
else: | |
if finetuning_args.finetuning_type == "lora": | |
ref_model = None | |
else: | |
ref_model, _ = load_model_and_tokenizer( | |
model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead | |
) | |
logger.info("Created reference model from the model itself.") | |
return ref_model | |
def create_reward_model( | |
model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments" | |
) -> "AutoModelForCausalLMWithValueHead": | |
r""" | |
Creates reward model for PPO training. | |
""" | |
if finetuning_args.reward_model_type == "api": | |
assert finetuning_args.reward_model.startswith("http"), "Please provide full url." | |
logger.info("Use reward server {}".format(finetuning_args.reward_model)) | |
return finetuning_args.reward_model | |
elif finetuning_args.reward_model_type == "lora": | |
model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward") | |
for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090 | |
if "default" in name: | |
param.data = param.data.to(torch.float32) # trainable params should in fp32 | |
vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args) | |
assert vhead_params is not None, "Reward model is not correctly loaded." | |
model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False) | |
model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False) | |
model.register_buffer( | |
"default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False | |
) | |
model.register_buffer( | |
"default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False | |
) | |
logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model)) | |
return None | |
else: | |
reward_model_args_dict = model_args.to_dict() | |
reward_model_args_dict.update( | |
dict( | |
model_name_or_path=finetuning_args.reward_model, | |
adapter_name_or_path=finetuning_args.reward_model_adapters, | |
quantization_bit=finetuning_args.reward_model_quantization_bit, | |
) | |
) | |
reward_model_args = ModelArguments(**reward_model_args_dict) | |
reward_finetuning_args = FinetuningArguments(finetuning_type="lora") | |
reward_model, _ = load_model_and_tokenizer( | |
reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True | |
) | |
logger.info("Loaded full weights of reward model from {}".format(finetuning_args.reward_model)) | |
logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.") | |
return reward_model | |