Spaces:
Runtime error
Runtime error
import math | |
import os | |
import random | |
from contextlib import nullcontext | |
from types import MethodType | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple | |
import torch | |
from datasets import load_dataset | |
from transformers import BitsAndBytesConfig, GPTQConfig, PreTrainedModel, PreTrainedTokenizerBase | |
from transformers.integrations import is_deepspeed_zero3_enabled | |
from transformers.utils.versions import require_version | |
from ..extras.constants import FILEEXT2TYPE, LAYERNORM_NAMES | |
from ..extras.logging import get_logger | |
from ..extras.misc import get_current_device, infer_optim_dtype | |
from ..extras.packages import is_flash_attn2_available | |
from ..extras.patches.llama_patch import apply_llama_patch | |
from ..extras.patches.mixtral_patch import patch_mixtral_replace_moe_impl | |
if TYPE_CHECKING: | |
from transformers import PretrainedConfig, PreTrainedTokenizer | |
from trl import AutoModelForCausalLMWithValueHead | |
from ..hparams import ModelArguments | |
logger = get_logger(__name__) | |
SUPPORTED_CLASS_FOR_S2ATTN = ["llama"] | |
def _noisy_mean_initialization(embed_weight: torch.Tensor, num_new_tokens: int): | |
embedding_dim = embed_weight.size(1) | |
avg_weight = embed_weight[:-num_new_tokens].mean(dim=0, keepdim=True) | |
noise_weight = torch.empty_like(embed_weight[-num_new_tokens:]) | |
noise_weight.normal_(mean=0, std=(1.0 / math.sqrt(embedding_dim))) | |
embed_weight[-num_new_tokens:] = avg_weight + noise_weight | |
def _resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer") -> None: | |
r""" | |
Resize token embeddings. | |
""" | |
if is_deepspeed_zero3_enabled(): | |
import deepspeed # type: ignore | |
params = [model.get_input_embeddings().weight] | |
if model.get_output_embeddings() is not None and not model.config.tie_word_embeddings: | |
params.append(model.get_output_embeddings().weight) | |
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0) | |
else: | |
context_maybe_zero3 = nullcontext() | |
with context_maybe_zero3: | |
current_embedding_size = model.get_input_embeddings().weight.size(0) | |
if len(tokenizer) > current_embedding_size: | |
if not isinstance(model.get_output_embeddings(), torch.nn.Linear): | |
logger.warning("Current model does not support resizing token embeddings.") | |
return | |
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64) | |
with context_maybe_zero3: | |
new_embedding_size = model.get_input_embeddings().weight.size(0) | |
num_new_tokens = new_embedding_size - current_embedding_size | |
_noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens) | |
_noisy_mean_initialization(model.get_output_embeddings().weight.data, num_new_tokens) | |
logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size)) | |
def _get_quantization_dataset(tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> List[str]: | |
r""" | |
Inspired by: https://github.com/huggingface/optimum/blob/v1.16.0/optimum/gptq/data.py#L133 | |
TODO: remove tokenizer.decode() https://github.com/huggingface/optimum/pull/1600 | |
""" | |
if os.path.isfile(model_args.export_quantization_dataset): | |
data_path = FILEEXT2TYPE.get(model_args.export_quantization_dataset.split(".")[-1], None) | |
data_files = model_args.export_quantization_dataset | |
else: | |
data_path = model_args.export_quantization_dataset | |
data_files = None | |
dataset = load_dataset(path=data_path, data_files=data_files, split="train", cache_dir=model_args.cache_dir) | |
maxlen = model_args.export_quantization_maxlen | |
samples = [] | |
for _ in range(model_args.export_quantization_nsamples): | |
while True: | |
sample_idx = random.randint(0, len(dataset) - 1) | |
sample: Dict[str, torch.Tensor] = tokenizer(dataset[sample_idx]["text"], return_tensors="pt") | |
if sample["input_ids"].size(1) >= maxlen: | |
break # TODO: fix large maxlen | |
word_idx = random.randint(0, sample["input_ids"].size(1) - maxlen - 1) | |
input_ids = sample["input_ids"][:, word_idx : word_idx + maxlen] | |
samples.append(tokenizer.decode(input_ids[0].tolist(), skip_special_tokens=True)) | |
return samples | |
def _configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: | |
if not hasattr(config, "rope_scaling"): | |
logger.warning("Current model does not support RoPE scaling.") | |
return | |
if is_trainable: | |
if model_args.rope_scaling == "dynamic": | |
logger.warning( | |
"Dynamic NTK scaling may not work well with fine-tuning. " | |
"See: https://github.com/huggingface/transformers/pull/24653" | |
) | |
current_max_length = getattr(config, "max_position_embeddings", None) | |
if current_max_length and model_args.model_max_length > current_max_length: | |
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length)) | |
else: | |
logger.warning("Input length is smaller than max length. Consider increase input length.") | |
scaling_factor = 1.0 | |
else: | |
scaling_factor = 2.0 | |
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor}) | |
logger.info( | |
"Using {} scaling strategy and setting scaling factor to {}".format(model_args.rope_scaling, scaling_factor) | |
) | |
def _configure_flashattn(config_kwargs: Dict[str, Any]) -> None: | |
if not is_flash_attn2_available(): | |
logger.warning("FlashAttention2 is not installed.") | |
return | |
config_kwargs["use_flash_attention_2"] = True | |
logger.info("Using FlashAttention-2 for faster training and inference.") | |
def _configure_longlora(config: "PretrainedConfig") -> None: | |
if getattr(config, "model_type", None) in SUPPORTED_CLASS_FOR_S2ATTN: | |
setattr(config, "group_size_ratio", 0.25) | |
apply_llama_patch() | |
logger.info("Using shift short attention with group_size_ratio=1/4.") | |
else: | |
logger.warning("Current model does not support shift short attention.") | |
def _configure_quantization( | |
config: "PretrainedConfig", | |
tokenizer: "PreTrainedTokenizer", | |
model_args: "ModelArguments", | |
config_kwargs: Dict[str, Any], | |
) -> None: | |
r""" | |
Priority: GPTQ-quantized (training) > AutoGPTQ (export) > Bitsandbytes (training) | |
""" | |
if getattr(config, "quantization_config", None): # gptq | |
if is_deepspeed_zero3_enabled(): | |
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.") | |
config_kwargs["device_map"] = {"": get_current_device()} | |
quantization_config: Dict[str, Any] = getattr(config, "quantization_config", None) | |
if quantization_config.get("quant_method", None) == "gptq" and quantization_config.get("bits", -1) == 4: | |
quantization_config["use_exllama"] = False # disable exllama | |
logger.info("Loading {}-bit GPTQ-quantized model.".format(quantization_config.get("bits", -1))) | |
elif model_args.export_quantization_bit is not None: # auto-gptq | |
require_version("optimum>=1.16.0", "To fix: pip install optimum>=1.16.0") | |
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0") | |
from accelerate.utils import get_max_memory | |
if getattr(config, "model_type", None) == "chatglm": | |
raise ValueError("ChatGLM model is not supported.") | |
config_kwargs["quantization_config"] = GPTQConfig( | |
bits=model_args.export_quantization_bit, | |
tokenizer=tokenizer, | |
dataset=_get_quantization_dataset(tokenizer, model_args), | |
) | |
config_kwargs["device_map"] = "auto" | |
config_kwargs["max_memory"] = get_max_memory() | |
logger.info("Quantizing model to {} bit.".format(model_args.export_quantization_bit)) | |
elif model_args.quantization_bit is not None: # bnb | |
if is_deepspeed_zero3_enabled(): | |
raise ValueError("DeepSpeed ZeRO-3 is incompatible with quantization.") | |
if model_args.quantization_bit == 8: | |
require_version("bitsandbytes>=0.37.0", "To fix: pip install bitsandbytes>=0.37.0") | |
config_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_8bit=True) | |
elif model_args.quantization_bit == 4: | |
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0") | |
config_kwargs["quantization_config"] = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=model_args.compute_dtype, | |
bnb_4bit_use_double_quant=model_args.double_quantization, | |
bnb_4bit_quant_type=model_args.quantization_type, | |
) | |
config_kwargs["device_map"] = {"": get_current_device()} | |
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit)) | |
def _prepare_model_for_training( | |
model: "PreTrainedModel", model_args: "ModelArguments", output_layer_name: Optional[str] = "lm_head" | |
) -> None: | |
r""" | |
Includes: | |
(1) cast the layernorm in fp32 | |
(2) make output embedding layer require grads | |
(3) add the upcasting of the lm_head in fp32 | |
Inspired by: https://github.com/huggingface/peft/blob/v0.7.1/src/peft/utils/other.py#L72 | |
""" | |
if model_args.upcast_layernorm: | |
for name, param in model.named_parameters(): | |
if param.ndim == 1 and any(ln_name in name for ln_name in LAYERNORM_NAMES): | |
param.data = param.data.to(torch.float32) | |
logger.info("Upcasting layernorm weights in float32.") | |
if not model_args.disable_gradient_checkpointing: | |
if not getattr(model, "supports_gradient_checkpointing", False): | |
logger.warning("Current model does not support gradient checkpointing.") | |
else: | |
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False}) | |
model.enable_input_require_grads() | |
model.config.use_cache = False # turn off when gradient checkpointing is enabled | |
logger.info("Gradient checkpointing enabled.") | |
if hasattr(model, output_layer_name) and model_args.upcast_lmhead_output: | |
def fp32_forward_post_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor): | |
return output.to(torch.float32) | |
output_layer = getattr(model, output_layer_name) | |
if isinstance(output_layer, torch.nn.Linear) and output_layer.weight.dtype != torch.float32: | |
output_layer.register_forward_hook(fp32_forward_post_hook) | |
def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None: | |
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__): | |
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer) | |
def patch_config( | |
config: "PretrainedConfig", | |
tokenizer: "PreTrainedTokenizer", | |
model_args: "ModelArguments", | |
config_kwargs: Dict[str, Any], | |
is_trainable: bool, | |
) -> None: | |
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32 | |
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None)) | |
if getattr(config, "model_type", None) == "qwen": | |
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]: | |
setattr(config, dtype_name, model_args.compute_dtype == dtype) | |
if model_args.rope_scaling is not None: | |
_configure_rope(config, model_args, is_trainable) | |
if model_args.flash_attn: | |
_configure_flashattn(config_kwargs) | |
if is_trainable and model_args.shift_attn: | |
_configure_longlora(config) | |
_configure_quantization(config, tokenizer, model_args, config_kwargs) | |
def patch_model( | |
model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments", is_trainable: bool | |
) -> None: | |
if "GenerationMixin" not in str(model.generate.__func__): | |
model.generate = MethodType(PreTrainedModel.generate, model) | |
if getattr(model.config, "model_type", None) == "chatglm": | |
setattr(model, "lm_head", model.transformer.output_layer) | |
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"]) | |
if model_args.resize_vocab: | |
_resize_embedding_layer(model, tokenizer) | |
if is_trainable: | |
_prepare_model_for_training(model, model_args) | |
if getattr(model.config, "model_type", None) == "mixtral" and is_deepspeed_zero3_enabled(): | |
require_version("deepspeed>=0.13.0", "To fix: pip install deepspeed>=0.13.0") | |
from deepspeed.utils import set_z3_leaf_modules # type: ignore | |
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock | |
set_z3_leaf_modules(model, [MixtralSparseMoeBlock]) | |
if is_trainable: | |
patch_mixtral_replace_moe_impl() | |
def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead") -> None: | |
def tie_weights(self: "AutoModelForCausalLMWithValueHead") -> None: | |
if isinstance(self.pretrained_model, PreTrainedModel): | |
self.pretrained_model.tie_weights() | |
def get_input_embeddings(self: "AutoModelForCausalLMWithValueHead") -> torch.nn.Module: | |
if isinstance(self.pretrained_model, PreTrainedModel): | |
return self.pretrained_model.get_input_embeddings() | |
ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name] | |
setattr(model, "_keys_to_ignore_on_save", ignore_modules) | |
setattr(model, "tie_weights", MethodType(tie_weights, model)) | |
setattr(model, "get_input_embeddings", MethodType(get_input_embeddings, model)) | |