Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
from transformers.models.mixtral.modeling_mixtral import MixtralBLockSparseTop2MLP, MixtralSparseMoeBlock | |
def mlp_forward(self: "MixtralBLockSparseTop2MLP", hidden_states: torch.Tensor) -> torch.Tensor: | |
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states) | |
current_hidden_states = self.w2(current_hidden_states) | |
return current_hidden_states | |
# Modified from: https://huggingface.co/deepseek-ai/deepseek-moe-16b-base/blob/main/modeling_deepseek.py | |
def moe_forward(self: "MixtralSparseMoeBlock", hidden_states: torch.Tensor) -> torch.Tensor: | |
batch_size, sequence_length, hidden_dim = hidden_states.shape | |
hidden_states = hidden_states.view(-1, hidden_dim) | |
# router_logits: (batch * sequence_length, n_experts) | |
router_logits = self.gate(hidden_states) | |
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) | |
topk_weight, topk_idx = torch.topk(routing_weights, self.top_k, dim=-1, sorted=False) | |
topk_weight /= topk_weight.sum(dim=-1, keepdim=True) | |
# we cast back to the input dtype | |
topk_weight = topk_weight.to(hidden_states.dtype) | |
hidden_states = hidden_states.repeat_interleave(self.top_k, dim=0) | |
y = torch.empty_like(hidden_states) | |
flat_topk_idx = topk_idx.view(-1) | |
for i in range(self.num_experts): | |
expert = self.experts[i] | |
y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]) | |
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) | |
final_hidden_states = y.reshape(batch_size, sequence_length, hidden_dim) | |
return final_hidden_states, router_logits | |
def patch_mixtral_replace_moe_impl() -> None: | |
MixtralBLockSparseTop2MLP.forward = mlp_forward | |
MixtralSparseMoeBlock.forward = moe_forward | |