Spaces:
Runtime error
Runtime error
| import gc | |
| import os | |
| from typing import TYPE_CHECKING, Dict, Tuple | |
| import torch | |
| from peft import PeftModel | |
| from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList, PreTrainedModel | |
| from transformers.utils import ( | |
| SAFE_WEIGHTS_NAME, | |
| WEIGHTS_NAME, | |
| is_torch_bf16_gpu_available, | |
| is_torch_cuda_available, | |
| is_torch_npu_available, | |
| is_torch_xpu_available, | |
| ) | |
| from .constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME | |
| from .logging import get_logger | |
| _is_fp16_available = is_torch_npu_available() or is_torch_cuda_available() | |
| try: | |
| _is_bf16_available = is_torch_bf16_gpu_available() | |
| except Exception: | |
| _is_bf16_available = False | |
| if TYPE_CHECKING: | |
| from trl import AutoModelForCausalLMWithValueHead | |
| from llmtuner.hparams import ModelArguments | |
| logger = get_logger(__name__) | |
| class AverageMeter: | |
| r""" | |
| Computes and stores the average and current value. | |
| """ | |
| def __init__(self): | |
| self.reset() | |
| def reset(self): | |
| self.val = 0 | |
| self.avg = 0 | |
| self.sum = 0 | |
| self.count = 0 | |
| def update(self, val, n=1): | |
| self.val = val | |
| self.sum += val * n | |
| self.count += n | |
| self.avg = self.sum / self.count | |
| def count_parameters(model: torch.nn.Module) -> Tuple[int, int]: | |
| r""" | |
| Returns the number of trainable parameters and number of all parameters in the model. | |
| """ | |
| trainable_params, all_param = 0, 0 | |
| for param in model.parameters(): | |
| num_params = param.numel() | |
| # if using DS Zero 3 and the weights are initialized empty | |
| if num_params == 0 and hasattr(param, "ds_numel"): | |
| num_params = param.ds_numel | |
| # Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by 2 | |
| if param.__class__.__name__ == "Params4bit": | |
| num_params = num_params * 2 | |
| all_param += num_params | |
| if param.requires_grad: | |
| trainable_params += num_params | |
| return trainable_params, all_param | |
| def fix_valuehead_checkpoint( | |
| model: "AutoModelForCausalLMWithValueHead", output_dir: str, safe_serialization: bool | |
| ) -> None: | |
| r""" | |
| The model is already unwrapped. | |
| There are three cases: | |
| 1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...} | |
| 2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...} | |
| 3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...} | |
| We assume `stage3_gather_16bit_weights_on_model_save=true`. | |
| """ | |
| if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)): | |
| return | |
| if safe_serialization: | |
| from safetensors import safe_open | |
| from safetensors.torch import save_file | |
| path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME) | |
| with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f: | |
| state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()} | |
| else: | |
| path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME) | |
| state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu") | |
| decoder_state_dict = {} | |
| v_head_state_dict = {} | |
| for name, param in state_dict.items(): | |
| if name.startswith("v_head."): | |
| v_head_state_dict[name] = param | |
| else: | |
| decoder_state_dict[name.replace("pretrained_model.", "")] = param | |
| os.remove(path_to_checkpoint) | |
| model.pretrained_model.save_pretrained( | |
| output_dir, state_dict=decoder_state_dict or None, safe_serialization=safe_serialization | |
| ) | |
| if safe_serialization: | |
| save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"}) | |
| else: | |
| torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME)) | |
| logger.info("Value head model saved at: {}".format(output_dir)) | |
| def get_current_device() -> torch.device: | |
| r""" | |
| Gets the current available device. | |
| """ | |
| if is_torch_xpu_available(): | |
| device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0")) | |
| elif is_torch_npu_available(): | |
| device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0")) | |
| elif is_torch_cuda_available(): | |
| device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0")) | |
| else: | |
| device = "cpu" | |
| return torch.device(device) | |
| def get_device_count() -> int: | |
| return torch.cuda.device_count() | |
| def get_logits_processor() -> "LogitsProcessorList": | |
| r""" | |
| Gets logits processor that removes NaN and Inf logits. | |
| """ | |
| logits_processor = LogitsProcessorList() | |
| logits_processor.append(InfNanRemoveLogitsProcessor()) | |
| return logits_processor | |
| def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype: | |
| r""" | |
| Infers the optimal dtype according to the model_dtype and device compatibility. | |
| """ | |
| if _is_bf16_available and model_dtype == torch.bfloat16: | |
| return torch.bfloat16 | |
| elif _is_fp16_available: | |
| return torch.float16 | |
| else: | |
| return torch.float32 | |
| def torch_gc() -> None: | |
| r""" | |
| Collects GPU memory. | |
| """ | |
| gc.collect() | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| def try_download_model_from_ms(model_args: "ModelArguments") -> None: | |
| if not use_modelscope() or os.path.exists(model_args.model_name_or_path): | |
| return | |
| try: | |
| from modelscope import snapshot_download | |
| revision = "master" if model_args.model_revision == "main" else model_args.model_revision | |
| model_args.model_name_or_path = snapshot_download( | |
| model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir | |
| ) | |
| except ImportError: | |
| raise ImportError("Please install modelscope via `pip install modelscope -U`") | |
| def use_modelscope() -> bool: | |
| return bool(int(os.environ.get("USE_MODELSCOPE_HUB", "0"))) | |