Spaces:
Runtime error
Runtime error
import gc | |
import os | |
from typing import TYPE_CHECKING, Dict, Tuple | |
import torch | |
from peft import PeftModel | |
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList, PreTrainedModel | |
from transformers.utils import ( | |
SAFE_WEIGHTS_NAME, | |
WEIGHTS_NAME, | |
is_torch_bf16_gpu_available, | |
is_torch_cuda_available, | |
is_torch_npu_available, | |
is_torch_xpu_available, | |
) | |
from .constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME | |
from .logging import get_logger | |
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available() | |
try: | |
_is_bf16_available = is_torch_bf16_gpu_available() | |
except Exception: | |
_is_bf16_available = False | |
if TYPE_CHECKING: | |
from trl import AutoModelForCausalLMWithValueHead | |
from llmtuner.hparams import ModelArguments | |
logger = get_logger(__name__) | |
class AverageMeter: | |
r""" | |
Computes and stores the average and current value. | |
""" | |
def __init__(self): | |
self.reset() | |
def reset(self): | |
self.val = 0 | |
self.avg = 0 | |
self.sum = 0 | |
self.count = 0 | |
def update(self, val, n=1): | |
self.val = val | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count | |
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]: | |
r""" | |
Returns the number of trainable parameters and number of all parameters in the model. | |
""" | |
trainable_params, all_param = 0, 0 | |
for param in model.parameters(): | |
num_params = param.numel() | |
# if using DS Zero 3 and the weights are initialized empty | |
if num_params == 0 and hasattr(param, "ds_numel"): | |
num_params = param.ds_numel | |
# Due to the design of 4bit linear layers from bitsandbytes, multiply the number of parameters by 2 | |
if param.__class__.__name__ == "Params4bit": | |
num_params = num_params * 2 | |
all_param += num_params | |
if param.requires_grad: | |
trainable_params += num_params | |
return trainable_params, all_param | |
def fix_valuehead_checkpoint( | |
model: "AutoModelForCausalLMWithValueHead", output_dir: str, safe_serialization: bool | |
) -> None: | |
r""" | |
The model is already unwrapped. | |
There are three cases: | |
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...} | |
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...} | |
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...} | |
We assume `stage3_gather_16bit_weights_on_model_save=true`. | |
""" | |
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)): | |
return | |
if safe_serialization: | |
from safetensors import safe_open | |
from safetensors.torch import save_file | |
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME) | |
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f: | |
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()} | |
else: | |
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME) | |
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu") | |
decoder_state_dict = {} | |
v_head_state_dict = {} | |
for name, param in state_dict.items(): | |
if name.startswith("v_head."): | |
v_head_state_dict[name] = param | |
else: | |
decoder_state_dict[name.replace("pretrained_model.", "")] = param | |
os.remove(path_to_checkpoint) | |
model.pretrained_model.save_pretrained( | |
output_dir, state_dict=decoder_state_dict or None, safe_serialization=safe_serialization | |
) | |
if safe_serialization: | |
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"}) | |
else: | |
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME)) | |
logger.info("Value head model saved at: {}".format(output_dir)) | |
def get_current_device() -> torch.device: | |
r""" | |
Gets the current available device. | |
""" | |
if is_torch_xpu_available(): | |
device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0")) | |
elif is_torch_npu_available(): | |
device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0")) | |
elif is_torch_cuda_available(): | |
device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0")) | |
else: | |
device = "cpu" | |
return torch.device(device) | |
def get_device_count() -> int: | |
return torch.cuda.device_count() | |
def get_logits_processor() -> "LogitsProcessorList": | |
r""" | |
Gets logits processor that removes NaN and Inf logits. | |
""" | |
logits_processor = LogitsProcessorList() | |
logits_processor.append(InfNanRemoveLogitsProcessor()) | |
return logits_processor | |
def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype: | |
r""" | |
Infers the optimal dtype according to the model_dtype and device compatibility. | |
""" | |
if _is_bf16_available and model_dtype == torch.bfloat16: | |
return torch.bfloat16 | |
elif _is_fp16_available: | |
return torch.float16 | |
else: | |
return torch.float32 | |
def torch_gc() -> None: | |
r""" | |
Collects GPU memory. | |
""" | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
def try_download_model_from_ms(model_args: "ModelArguments") -> None: | |
if not use_modelscope() or os.path.exists(model_args.model_name_or_path): | |
return | |
try: | |
from modelscope import snapshot_download | |
revision = "master" if model_args.model_revision == "main" else model_args.model_revision | |
model_args.model_name_or_path = snapshot_download( | |
model_args.model_name_or_path, revision=revision, cache_dir=model_args.cache_dir | |
) | |
except ImportError: | |
raise ImportError("Please install modelscope via `pip install modelscope -U`") | |
def use_modelscope() -> bool: | |
return bool(int(os.environ.get("USE_MODELSCOPE_HUB", "0"))) | |