Spaces:
Runtime error
Runtime error
import json | |
import os | |
import time | |
from datetime import timedelta | |
from typing import TYPE_CHECKING | |
from transformers import TrainerCallback | |
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, has_length | |
from .constants import LOG_FILE_NAME | |
from .logging import get_logger | |
from .misc import fix_valuehead_checkpoint | |
if TYPE_CHECKING: | |
from transformers import TrainerControl, TrainerState, TrainingArguments | |
logger = get_logger(__name__) | |
class FixValueHeadModelCallback(TrainerCallback): | |
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
r""" | |
Event called after a checkpoint save. | |
""" | |
if args.should_save: | |
fix_valuehead_checkpoint( | |
model=kwargs.pop("model"), | |
output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)), | |
safe_serialization=args.save_safetensors, | |
) | |
class LogCallback(TrainerCallback): | |
def __init__(self, runner=None): | |
self.runner = runner | |
self.in_training = False | |
self.start_time = time.time() | |
self.cur_steps = 0 | |
self.max_steps = 0 | |
self.elapsed_time = "" | |
self.remaining_time = "" | |
def timing(self): | |
cur_time = time.time() | |
elapsed_time = cur_time - self.start_time | |
avg_time_per_step = elapsed_time / self.cur_steps if self.cur_steps != 0 else 0 | |
remaining_time = (self.max_steps - self.cur_steps) * avg_time_per_step | |
self.elapsed_time = str(timedelta(seconds=int(elapsed_time))) | |
self.remaining_time = str(timedelta(seconds=int(remaining_time))) | |
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
r""" | |
Event called at the beginning of training. | |
""" | |
if state.is_local_process_zero: | |
self.in_training = True | |
self.start_time = time.time() | |
self.max_steps = state.max_steps | |
if os.path.exists(os.path.join(args.output_dir, LOG_FILE_NAME)) and args.overwrite_output_dir: | |
logger.warning("Previous log file in this folder will be deleted.") | |
os.remove(os.path.join(args.output_dir, LOG_FILE_NAME)) | |
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
r""" | |
Event called at the end of training. | |
""" | |
if state.is_local_process_zero: | |
self.in_training = False | |
self.cur_steps = 0 | |
self.max_steps = 0 | |
def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
r""" | |
Event called at the end of an substep during gradient accumulation. | |
""" | |
if state.is_local_process_zero and self.runner is not None and self.runner.aborted: | |
control.should_epoch_stop = True | |
control.should_training_stop = True | |
def on_step_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
r""" | |
Event called at the end of a training step. | |
""" | |
if state.is_local_process_zero: | |
self.cur_steps = state.global_step | |
self.timing() | |
if self.runner is not None and self.runner.aborted: | |
control.should_epoch_stop = True | |
control.should_training_stop = True | |
def on_evaluate(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs): | |
r""" | |
Event called after an evaluation phase. | |
""" | |
if state.is_local_process_zero and not self.in_training: | |
self.cur_steps = 0 | |
self.max_steps = 0 | |
def on_predict( | |
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", *other, **kwargs | |
): | |
r""" | |
Event called after a successful prediction. | |
""" | |
if state.is_local_process_zero and not self.in_training: | |
self.cur_steps = 0 | |
self.max_steps = 0 | |
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs) -> None: | |
r""" | |
Event called after logging the last logs. | |
""" | |
if not state.is_local_process_zero: | |
return | |
logs = dict( | |
current_steps=self.cur_steps, | |
total_steps=self.max_steps, | |
loss=state.log_history[-1].get("loss", None), | |
eval_loss=state.log_history[-1].get("eval_loss", None), | |
predict_loss=state.log_history[-1].get("predict_loss", None), | |
reward=state.log_history[-1].get("reward", None), | |
learning_rate=state.log_history[-1].get("learning_rate", None), | |
epoch=state.log_history[-1].get("epoch", None), | |
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100, | |
elapsed_time=self.elapsed_time, | |
remaining_time=self.remaining_time, | |
) | |
if self.runner is not None: | |
logger.info( | |
"{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}}}".format( | |
logs["loss"] or 0, logs["learning_rate"] or 0, logs["epoch"] or 0 | |
) | |
) | |
os.makedirs(args.output_dir, exist_ok=True) | |
with open(os.path.join(args.output_dir, "trainer_log.jsonl"), "a", encoding="utf-8") as f: | |
f.write(json.dumps(logs) + "\n") | |
def on_prediction_step( | |
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs | |
): | |
r""" | |
Event called after a prediction step. | |
""" | |
eval_dataloader = kwargs.pop("eval_dataloader", None) | |
if state.is_local_process_zero and has_length(eval_dataloader) and not self.in_training: | |
if self.max_steps == 0: | |
self.max_steps = len(eval_dataloader) | |
self.cur_steps += 1 | |
self.timing() | |