Spaces:
Runtime error
Runtime error
from dataclasses import dataclass | |
from threading import Thread | |
from typing import Any, Dict, Generator, List, Literal, Optional, Sequence, Tuple | |
import torch | |
from transformers import GenerationConfig, TextIteratorStreamer | |
from ..data import get_template_and_fix_tokenizer | |
from ..extras.misc import get_logits_processor | |
from ..hparams import get_infer_args | |
from ..model import dispatch_model, load_model_and_tokenizer | |
class Response: | |
response_text: str | |
response_length: int | |
prompt_length: int | |
finish_reason: Literal["stop", "length"] | |
class ChatModel: | |
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None: | |
model_args, data_args, finetuning_args, self.generating_args = get_infer_args(args) | |
self.can_generate = finetuning_args.stage == "sft" | |
self.model, self.tokenizer = load_model_and_tokenizer( | |
model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate) | |
) | |
self.tokenizer.padding_side = "left" if self.can_generate else "right" | |
self.model = dispatch_model(self.model) | |
self.template = get_template_and_fix_tokenizer(data_args.template, self.tokenizer) | |
def _process_args( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
**input_kwargs, | |
) -> Tuple[Dict[str, Any], int]: | |
paired_messages = messages + [{"role": "assistant", "content": ""}] | |
prompt, _ = self.template.encode_oneturn( | |
tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools | |
) | |
prompt_length = len(prompt) | |
input_ids = torch.tensor([prompt], device=self.model.device) | |
do_sample = input_kwargs.pop("do_sample", None) | |
temperature = input_kwargs.pop("temperature", None) | |
top_p = input_kwargs.pop("top_p", None) | |
top_k = input_kwargs.pop("top_k", None) | |
num_return_sequences = input_kwargs.pop("num_return_sequences", None) | |
repetition_penalty = input_kwargs.pop("repetition_penalty", None) | |
max_length = input_kwargs.pop("max_length", None) | |
max_new_tokens = input_kwargs.pop("max_new_tokens", None) | |
generating_args = self.generating_args.to_dict() | |
generating_args.update( | |
dict( | |
do_sample=do_sample if do_sample is not None else generating_args["do_sample"], | |
temperature=temperature or generating_args["temperature"], | |
top_p=top_p or generating_args["top_p"], | |
top_k=top_k or generating_args["top_k"], | |
num_return_sequences=num_return_sequences or 1, | |
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"], | |
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids, | |
pad_token_id=self.tokenizer.pad_token_id, | |
) | |
) | |
if isinstance(num_return_sequences, int) and num_return_sequences > 1: | |
generating_args["do_sample"] = True | |
if max_length: | |
generating_args.pop("max_new_tokens", None) | |
generating_args["max_length"] = max_length | |
if max_new_tokens: | |
generating_args.pop("max_length", None) | |
generating_args["max_new_tokens"] = max_new_tokens | |
gen_kwargs = dict( | |
inputs=input_ids, | |
generation_config=GenerationConfig(**generating_args), | |
logits_processor=get_logits_processor(), | |
) | |
return gen_kwargs, prompt_length | |
def chat( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
**input_kwargs, | |
) -> List[Response]: | |
gen_kwargs, prompt_length = self._process_args(messages, system, tools, **input_kwargs) | |
generate_output = self.model.generate(**gen_kwargs) | |
response_ids = generate_output[:, prompt_length:] | |
response = self.tokenizer.batch_decode( | |
response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True | |
) | |
results = [] | |
for i in range(len(response)): | |
eos_index = (response_ids[i] == self.tokenizer.eos_token_id).nonzero() | |
response_length = (eos_index[0].item() + 1) if len(eos_index) else len(response_ids[i]) | |
results.append( | |
Response( | |
response_text=response[i], | |
response_length=response_length, | |
prompt_length=prompt_length, | |
finish_reason="stop" if len(eos_index) else "length", | |
) | |
) | |
return results | |
def stream_chat( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
**input_kwargs, | |
) -> Generator[str, None, None]: | |
gen_kwargs, _ = self._process_args(messages, system, tools, **input_kwargs) | |
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs["streamer"] = streamer | |
thread = Thread(target=self.model.generate, kwargs=gen_kwargs) | |
thread.start() | |
yield from streamer | |
def get_scores(self, batch_input: List[str], **input_kwargs) -> List[float]: | |
max_length = input_kwargs.pop("max_length", None) | |
device = getattr(self.model.pretrained_model, "device", "cuda") | |
inputs = self.tokenizer( | |
batch_input, | |
padding=True, | |
truncation=True, | |
max_length=max_length or getattr(self.model.config, "max_position_embeddings", 1024), | |
return_tensors="pt", | |
add_special_tokens=True, | |
).to(device) | |
input_ids: torch.Tensor = inputs["input_ids"] | |
_, _, values = self.model(**inputs, output_hidden_states=True, return_dict=True) | |
if getattr(self.model.config, "model_type", None) == "chatglm": | |
values = torch.transpose(values, 0, 1) | |
scores = [] | |
for i in range(input_ids.size(0)): | |
end_indexes = (input_ids[i] != self.tokenizer.pad_token_id).nonzero() | |
end_index = end_indexes[-1].item() if len(end_indexes) else 0 | |
scores.append(values[i, end_index].nan_to_num().item()) | |
return scores | |