Spaces:
Running
Running
Delete App_Function_Libraries/RAG_Libary_2.py
Browse files
App_Function_Libraries/RAG_Libary_2.py
DELETED
@@ -1,721 +0,0 @@
|
|
1 |
-
# Import necessary modules and functions
|
2 |
-
import configparser
|
3 |
-
from typing import Dict, Any
|
4 |
-
# Local Imports
|
5 |
-
#from App_Function_Libraries.ChromaDB_Library import process_and_store_content, vector_search, chroma_client
|
6 |
-
from Article_Extractor_Lib import scrape_article
|
7 |
-
from SQLite_DB import search_db, db
|
8 |
-
# 3rd-Party Imports
|
9 |
-
#import openai
|
10 |
-
# Initialize OpenAI client (adjust this based on your API key management)
|
11 |
-
#openai.api_key = "your-openai-api-key"
|
12 |
-
|
13 |
-
|
14 |
-
# Main RAG pipeline function
|
15 |
-
def rag_pipeline(url: str, query: str, api_choice=None) -> Dict[str, Any]:
|
16 |
-
# Extract content
|
17 |
-
# article_data = scrape_article(url)
|
18 |
-
# content = article_data['content']
|
19 |
-
|
20 |
-
# Process and store content
|
21 |
-
# collection_name = "article_" + str(hash(url))
|
22 |
-
# process_and_store_content(content, collection_name)
|
23 |
-
|
24 |
-
# Perform searches
|
25 |
-
# vector_results = vector_search(collection_name, query, k=5)
|
26 |
-
# fts_results = search_db(query, ["content"], "", page=1, results_per_page=5)
|
27 |
-
|
28 |
-
# Combine results
|
29 |
-
# all_results = vector_results + [result['content'] for result in fts_results]
|
30 |
-
# context = "\n".join(all_results)
|
31 |
-
|
32 |
-
# Generate answer using the selected API
|
33 |
-
# answer = generate_answer(api_choice, context, query)
|
34 |
-
|
35 |
-
# return {
|
36 |
-
# "answer": answer,
|
37 |
-
# "context": context
|
38 |
-
# }
|
39 |
-
pass
|
40 |
-
|
41 |
-
config = configparser.ConfigParser()
|
42 |
-
config.read('config.txt')
|
43 |
-
|
44 |
-
def generate_answer(api_choice: str, context: str, query: str) -> str:
|
45 |
-
prompt = f"Context: {context}\n\nQuestion: {query}"
|
46 |
-
if api_choice == "OpenAI":
|
47 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openai
|
48 |
-
return summarize_with_openai(config['API']['openai_api_key'], prompt, "")
|
49 |
-
elif api_choice == "Anthropic":
|
50 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_anthropic
|
51 |
-
return summarize_with_anthropic(config['API']['anthropic_api_key'], prompt, "")
|
52 |
-
elif api_choice == "Cohere":
|
53 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_cohere
|
54 |
-
return summarize_with_cohere(config['API']['cohere_api_key'], prompt, "")
|
55 |
-
elif api_choice == "Groq":
|
56 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_groq
|
57 |
-
return summarize_with_groq(config['API']['groq_api_key'], prompt, "")
|
58 |
-
elif api_choice == "OpenRouter":
|
59 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_openrouter
|
60 |
-
return summarize_with_openrouter(config['API']['openrouter_api_key'], prompt, "")
|
61 |
-
elif api_choice == "HuggingFace":
|
62 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_huggingface
|
63 |
-
return summarize_with_huggingface(config['API']['huggingface_api_key'], prompt, "")
|
64 |
-
elif api_choice == "DeepSeek":
|
65 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_deepseek
|
66 |
-
return summarize_with_deepseek(config['API']['deepseek_api_key'], prompt, "")
|
67 |
-
elif api_choice == "Mistral":
|
68 |
-
from App_Function_Libraries.Summarization_General_Lib import summarize_with_mistral
|
69 |
-
return summarize_with_mistral(config['API']['mistral_api_key'], prompt, "")
|
70 |
-
elif api_choice == "Local-LLM":
|
71 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_local_llm
|
72 |
-
return summarize_with_local_llm(config['API']['local_llm_path'], prompt, "")
|
73 |
-
elif api_choice == "Llama.cpp":
|
74 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_llama
|
75 |
-
return summarize_with_llama(config['API']['llama_api_key'], prompt, "")
|
76 |
-
elif api_choice == "Kobold":
|
77 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_kobold
|
78 |
-
return summarize_with_kobold(config['API']['kobold_api_key'], prompt, "")
|
79 |
-
elif api_choice == "Ooba":
|
80 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_oobabooga
|
81 |
-
return summarize_with_oobabooga(config['API']['ooba_api_key'], prompt, "")
|
82 |
-
elif api_choice == "TabbyAPI":
|
83 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_tabbyapi
|
84 |
-
return summarize_with_tabbyapi(config['API']['tabby_api_key'], prompt, "")
|
85 |
-
elif api_choice == "vLLM":
|
86 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_vllm
|
87 |
-
return summarize_with_vllm(config['API']['vllm_api_key'], prompt, "")
|
88 |
-
elif api_choice == "ollama":
|
89 |
-
from App_Function_Libraries.Local_Summarization_Lib import summarize_with_ollama
|
90 |
-
return summarize_with_ollama(config['API']['ollama_api_key'], prompt, "")
|
91 |
-
else:
|
92 |
-
raise ValueError(f"Unsupported API choice: {api_choice}")
|
93 |
-
|
94 |
-
# Function to preprocess and store all existing content in the database
|
95 |
-
#def preprocess_all_content():
|
96 |
-
# with db.get_connection() as conn:
|
97 |
-
# cursor = conn.cursor()
|
98 |
-
# cursor.execute("SELECT id, content FROM Media")
|
99 |
-
# for row in cursor.fetchall():
|
100 |
-
# process_and_store_content(row[1], f"media_{row[0]}")
|
101 |
-
|
102 |
-
|
103 |
-
# Function to perform RAG search across all stored content
|
104 |
-
def rag_search(query: str, api_choice: str) -> Dict[str, Any]:
|
105 |
-
# Perform vector search across all collections
|
106 |
-
# all_collections = chroma_client.list_collections()
|
107 |
-
# vector_results = []
|
108 |
-
# for collection in all_collections:
|
109 |
-
# vector_results.extend(vector_search(collection.name, query, k=2))
|
110 |
-
|
111 |
-
# Perform FTS search
|
112 |
-
# fts_results = search_db(query, ["content"], "", page=1, results_per_page=10)
|
113 |
-
|
114 |
-
# Combine results
|
115 |
-
# all_results = vector_results + [result['content'] for result in fts_results]
|
116 |
-
# context = "\n".join(all_results[:10]) # Limit to top 10 results
|
117 |
-
|
118 |
-
# Generate answer using the selected API
|
119 |
-
# answer = generate_answer(api_choice, context, query)
|
120 |
-
|
121 |
-
# return {
|
122 |
-
# "answer": answer,
|
123 |
-
# "context": context
|
124 |
-
# }
|
125 |
-
pass
|
126 |
-
|
127 |
-
# Example usage:
|
128 |
-
# 1. Initialize the system:
|
129 |
-
# create_tables(db) # Ensure FTS tables are set up
|
130 |
-
# preprocess_all_content() # Process and store all existing content
|
131 |
-
|
132 |
-
# 2. Perform RAG on a specific URL:
|
133 |
-
# result = rag_pipeline("https://example.com/article", "What is the main topic of this article?")
|
134 |
-
# print(result['answer'])
|
135 |
-
|
136 |
-
# 3. Perform RAG search across all content:
|
137 |
-
# result = rag_search("What are the key points about climate change?")
|
138 |
-
# print(result['answer'])
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
##################################################################################################################
|
144 |
-
# RAG Pipeline 1
|
145 |
-
#0.62 0.61 0.75 63402.0
|
146 |
-
# from langchain_openai import ChatOpenAI
|
147 |
-
#
|
148 |
-
# from langchain_community.document_loaders import WebBaseLoader
|
149 |
-
# from langchain_openai import OpenAIEmbeddings
|
150 |
-
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
151 |
-
# from langchain_chroma import Chroma
|
152 |
-
#
|
153 |
-
# from langchain_community.retrievers import BM25Retriever
|
154 |
-
# from langchain.retrievers import ParentDocumentRetriever
|
155 |
-
# from langchain.storage import InMemoryStore
|
156 |
-
# import os
|
157 |
-
# from operator import itemgetter
|
158 |
-
# from langchain import hub
|
159 |
-
# from langchain_core.output_parsers import StrOutputParser
|
160 |
-
# from langchain_core.runnables import RunnablePassthrough, RunnableParallel, RunnableLambda
|
161 |
-
# from langchain.retrievers import MergerRetriever
|
162 |
-
# from langchain.retrievers.document_compressors import DocumentCompressorPipeline
|
163 |
-
|
164 |
-
|
165 |
-
# def rag_pipeline():
|
166 |
-
# try:
|
167 |
-
# def format_docs(docs):
|
168 |
-
# return "\n".join(doc.page_content for doc in docs)
|
169 |
-
#
|
170 |
-
# llm = ChatOpenAI(model='gpt-4o-mini')
|
171 |
-
#
|
172 |
-
# loader = WebBaseLoader('https://en.wikipedia.org/wiki/European_debt_crisis')
|
173 |
-
# docs = loader.load()
|
174 |
-
#
|
175 |
-
# embedding = OpenAIEmbeddings(model='text-embedding-3-large')
|
176 |
-
#
|
177 |
-
# splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=200)
|
178 |
-
# splits = splitter.split_documents(docs)
|
179 |
-
# c = Chroma.from_documents(documents=splits, embedding=embedding,
|
180 |
-
# collection_name='testindex-ragbuilder-1724657573', )
|
181 |
-
# retrievers = []
|
182 |
-
# retriever = c.as_retriever(search_type='mmr', search_kwargs={'k': 10})
|
183 |
-
# retrievers.append(retriever)
|
184 |
-
# retriever = BM25Retriever.from_documents(docs)
|
185 |
-
# retrievers.append(retriever)
|
186 |
-
#
|
187 |
-
# parent_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=600)
|
188 |
-
# splits = parent_splitter.split_documents(docs)
|
189 |
-
# store = InMemoryStore()
|
190 |
-
# retriever = ParentDocumentRetriever(vectorstore=c, docstore=store, child_splitter=splitter,
|
191 |
-
# parent_splitter=parent_splitter)
|
192 |
-
# retriever.add_documents(docs)
|
193 |
-
# retrievers.append(retriever)
|
194 |
-
# retriever = MergerRetriever(retrievers=retrievers)
|
195 |
-
# prompt = hub.pull("rlm/rag-prompt")
|
196 |
-
# rag_chain = (
|
197 |
-
# RunnableParallel(context=retriever, question=RunnablePassthrough())
|
198 |
-
# .assign(context=itemgetter("context") | RunnableLambda(format_docs))
|
199 |
-
# .assign(answer=prompt | llm | StrOutputParser())
|
200 |
-
# .pick(["answer", "context"]))
|
201 |
-
# return rag_chain
|
202 |
-
# except Exception as e:
|
203 |
-
# print(f"An error occurred: {e}")
|
204 |
-
|
205 |
-
|
206 |
-
##To get the answer and context, use the following code
|
207 |
-
# res=rag_pipeline().invoke("your prompt here")
|
208 |
-
# print(res["answer"])
|
209 |
-
# print(res["context"])
|
210 |
-
|
211 |
-
############################################################################################################
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
############################################################################################################
|
216 |
-
# RAG Pipeline 2
|
217 |
-
|
218 |
-
#0.6 0.73 0.68 3125.0
|
219 |
-
# from langchain_openai import ChatOpenAI
|
220 |
-
#
|
221 |
-
# from langchain_community.document_loaders import WebBaseLoader
|
222 |
-
# from langchain_openai import OpenAIEmbeddings
|
223 |
-
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
224 |
-
# from langchain_chroma import Chroma
|
225 |
-
# from langchain.retrievers.multi_query import MultiQueryRetriever
|
226 |
-
# from langchain.retrievers import ParentDocumentRetriever
|
227 |
-
# from langchain.storage import InMemoryStore
|
228 |
-
# from langchain_community.document_transformers import EmbeddingsRedundantFilter
|
229 |
-
# from langchain.retrievers.document_compressors import LLMChainFilter
|
230 |
-
# from langchain.retrievers.document_compressors import EmbeddingsFilter
|
231 |
-
# from langchain.retrievers import ContextualCompressionRetriever
|
232 |
-
# import os
|
233 |
-
# from operator import itemgetter
|
234 |
-
# from langchain import hub
|
235 |
-
# from langchain_core.output_parsers import StrOutputParser
|
236 |
-
# from langchain_core.runnables import RunnablePassthrough, RunnableParallel, RunnableLambda
|
237 |
-
# from langchain.retrievers import MergerRetriever
|
238 |
-
# from langchain.retrievers.document_compressors import DocumentCompressorPipeline
|
239 |
-
|
240 |
-
|
241 |
-
# def rag_pipeline():
|
242 |
-
# try:
|
243 |
-
# def format_docs(docs):
|
244 |
-
# return "\n".join(doc.page_content for doc in docs)
|
245 |
-
#
|
246 |
-
# llm = ChatOpenAI(model='gpt-4o-mini')
|
247 |
-
#
|
248 |
-
# loader = WebBaseLoader('https://en.wikipedia.org/wiki/European_debt_crisis')
|
249 |
-
# docs = loader.load()
|
250 |
-
#
|
251 |
-
# embedding = OpenAIEmbeddings(model='text-embedding-3-large')
|
252 |
-
#
|
253 |
-
# splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=200)
|
254 |
-
# splits = splitter.split_documents(docs)
|
255 |
-
# c = Chroma.from_documents(documents=splits, embedding=embedding,
|
256 |
-
# collection_name='testindex-ragbuilder-1724650962', )
|
257 |
-
# retrievers = []
|
258 |
-
# retriever = MultiQueryRetriever.from_llm(c.as_retriever(search_type='similarity', search_kwargs={'k': 10}),
|
259 |
-
# llm=llm)
|
260 |
-
# retrievers.append(retriever)
|
261 |
-
#
|
262 |
-
# parent_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=600)
|
263 |
-
# splits = parent_splitter.split_documents(docs)
|
264 |
-
# store = InMemoryStore()
|
265 |
-
# retriever = ParentDocumentRetriever(vectorstore=c, docstore=store, child_splitter=splitter,
|
266 |
-
# parent_splitter=parent_splitter)
|
267 |
-
# retriever.add_documents(docs)
|
268 |
-
# retrievers.append(retriever)
|
269 |
-
# retriever = MergerRetriever(retrievers=retrievers)
|
270 |
-
# arr_comp = []
|
271 |
-
# arr_comp.append(EmbeddingsRedundantFilter(embeddings=embedding))
|
272 |
-
# arr_comp.append(LLMChainFilter.from_llm(llm))
|
273 |
-
# pipeline_compressor = DocumentCompressorPipeline(transformers=arr_comp)
|
274 |
-
# retriever = ContextualCompressionRetriever(base_retriever=retriever, base_compressor=pipeline_compressor)
|
275 |
-
# prompt = hub.pull("rlm/rag-prompt")
|
276 |
-
# rag_chain = (
|
277 |
-
# RunnableParallel(context=retriever, question=RunnablePassthrough())
|
278 |
-
# .assign(context=itemgetter("context") | RunnableLambda(format_docs))
|
279 |
-
# .assign(answer=prompt | llm | StrOutputParser())
|
280 |
-
# .pick(["answer", "context"]))
|
281 |
-
# return rag_chain
|
282 |
-
# except Exception as e:
|
283 |
-
# print(f"An error occurred: {e}")
|
284 |
-
|
285 |
-
|
286 |
-
##To get the answer and context, use the following code
|
287 |
-
# res=rag_pipeline().invoke("your prompt here")
|
288 |
-
# print(res["answer"])
|
289 |
-
# print(res["context"])
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
############################################################################################################
|
298 |
-
# Plain bm25 retriever
|
299 |
-
# class BM25Retriever(BaseRetriever):
|
300 |
-
# """`BM25` retriever without Elasticsearch."""
|
301 |
-
#
|
302 |
-
# vectorizer: Any
|
303 |
-
# """ BM25 vectorizer."""
|
304 |
-
# docs: List[Document] = Field(repr=False)
|
305 |
-
# """ List of documents."""
|
306 |
-
# k: int = 4
|
307 |
-
# """ Number of documents to return."""
|
308 |
-
# preprocess_func: Callable[[str], List[str]] = default_preprocessing_func
|
309 |
-
# """ Preprocessing function to use on the text before BM25 vectorization."""
|
310 |
-
#
|
311 |
-
# class Config:
|
312 |
-
# arbitrary_types_allowed = True
|
313 |
-
#
|
314 |
-
# @classmethod
|
315 |
-
# def from_texts(
|
316 |
-
# cls,
|
317 |
-
# texts: Iterable[str],
|
318 |
-
# metadatas: Optional[Iterable[dict]] = None,
|
319 |
-
# bm25_params: Optional[Dict[str, Any]] = None,
|
320 |
-
# preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
|
321 |
-
# **kwargs: Any,
|
322 |
-
# ) -> BM25Retriever:
|
323 |
-
# """
|
324 |
-
# Create a BM25Retriever from a list of texts.
|
325 |
-
# Args:
|
326 |
-
# texts: A list of texts to vectorize.
|
327 |
-
# metadatas: A list of metadata dicts to associate with each text.
|
328 |
-
# bm25_params: Parameters to pass to the BM25 vectorizer.
|
329 |
-
# preprocess_func: A function to preprocess each text before vectorization.
|
330 |
-
# **kwargs: Any other arguments to pass to the retriever.
|
331 |
-
#
|
332 |
-
# Returns:
|
333 |
-
# A BM25Retriever instance.
|
334 |
-
# """
|
335 |
-
# try:
|
336 |
-
# from rank_bm25 import BM25Okapi
|
337 |
-
# except ImportError:
|
338 |
-
# raise ImportError(
|
339 |
-
# "Could not import rank_bm25, please install with `pip install "
|
340 |
-
# "rank_bm25`."
|
341 |
-
# )
|
342 |
-
#
|
343 |
-
# texts_processed = [preprocess_func(t) for t in texts]
|
344 |
-
# bm25_params = bm25_params or {}
|
345 |
-
# vectorizer = BM25Okapi(texts_processed, **bm25_params)
|
346 |
-
# metadatas = metadatas or ({} for _ in texts)
|
347 |
-
# docs = [Document(page_content=t, metadata=m) for t, m in zip(texts, metadatas)]
|
348 |
-
# return cls(
|
349 |
-
# vectorizer=vectorizer, docs=docs, preprocess_func=preprocess_func, **kwargs
|
350 |
-
# )
|
351 |
-
#
|
352 |
-
# @classmethod
|
353 |
-
# def from_documents(
|
354 |
-
# cls,
|
355 |
-
# documents: Iterable[Document],
|
356 |
-
# *,
|
357 |
-
# bm25_params: Optional[Dict[str, Any]] = None,
|
358 |
-
# preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
|
359 |
-
# **kwargs: Any,
|
360 |
-
# ) -> BM25Retriever:
|
361 |
-
# """
|
362 |
-
# Create a BM25Retriever from a list of Documents.
|
363 |
-
# Args:
|
364 |
-
# documents: A list of Documents to vectorize.
|
365 |
-
# bm25_params: Parameters to pass to the BM25 vectorizer.
|
366 |
-
# preprocess_func: A function to preprocess each text before vectorization.
|
367 |
-
# **kwargs: Any other arguments to pass to the retriever.
|
368 |
-
#
|
369 |
-
# Returns:
|
370 |
-
# A BM25Retriever instance.
|
371 |
-
# """
|
372 |
-
# texts, metadatas = zip(*((d.page_content, d.metadata) for d in documents))
|
373 |
-
# return cls.from_texts(
|
374 |
-
# texts=texts,
|
375 |
-
# bm25_params=bm25_params,
|
376 |
-
# metadatas=metadatas,
|
377 |
-
# preprocess_func=preprocess_func,
|
378 |
-
# **kwargs,
|
379 |
-
# )
|
380 |
-
#
|
381 |
-
# def _get_relevant_documents(
|
382 |
-
# self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
383 |
-
# ) -> List[Document]:
|
384 |
-
# processed_query = self.preprocess_func(query)
|
385 |
-
# return_docs = self.vectorizer.get_top_n(processed_query, self.docs, n=self.k)
|
386 |
-
# return return_docs
|
387 |
-
############################################################################################################
|
388 |
-
|
389 |
-
############################################################################################################
|
390 |
-
# ElasticSearch BM25 Retriever
|
391 |
-
# class ElasticSearchBM25Retriever(BaseRetriever):
|
392 |
-
# """`Elasticsearch` retriever that uses `BM25`.
|
393 |
-
#
|
394 |
-
# To connect to an Elasticsearch instance that requires login credentials,
|
395 |
-
# including Elastic Cloud, use the Elasticsearch URL format
|
396 |
-
# https://username:password@es_host:9243. For example, to connect to Elastic
|
397 |
-
# Cloud, create the Elasticsearch URL with the required authentication details and
|
398 |
-
# pass it to the ElasticVectorSearch constructor as the named parameter
|
399 |
-
# elasticsearch_url.
|
400 |
-
#
|
401 |
-
# You can obtain your Elastic Cloud URL and login credentials by logging in to the
|
402 |
-
# Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and
|
403 |
-
# navigating to the "Deployments" page.
|
404 |
-
#
|
405 |
-
# To obtain your Elastic Cloud password for the default "elastic" user:
|
406 |
-
#
|
407 |
-
# 1. Log in to the Elastic Cloud console at https://cloud.elastic.co
|
408 |
-
# 2. Go to "Security" > "Users"
|
409 |
-
# 3. Locate the "elastic" user and click "Edit"
|
410 |
-
# 4. Click "Reset password"
|
411 |
-
# 5. Follow the prompts to reset the password
|
412 |
-
#
|
413 |
-
# The format for Elastic Cloud URLs is
|
414 |
-
# https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243.
|
415 |
-
# """
|
416 |
-
#
|
417 |
-
# client: Any
|
418 |
-
# """Elasticsearch client."""
|
419 |
-
# index_name: str
|
420 |
-
# """Name of the index to use in Elasticsearch."""
|
421 |
-
#
|
422 |
-
# @classmethod
|
423 |
-
# def create(
|
424 |
-
# cls, elasticsearch_url: str, index_name: str, k1: float = 2.0, b: float = 0.75
|
425 |
-
# ) -> ElasticSearchBM25Retriever:
|
426 |
-
# """
|
427 |
-
# Create a ElasticSearchBM25Retriever from a list of texts.
|
428 |
-
#
|
429 |
-
# Args:
|
430 |
-
# elasticsearch_url: URL of the Elasticsearch instance to connect to.
|
431 |
-
# index_name: Name of the index to use in Elasticsearch.
|
432 |
-
# k1: BM25 parameter k1.
|
433 |
-
# b: BM25 parameter b.
|
434 |
-
#
|
435 |
-
# Returns:
|
436 |
-
#
|
437 |
-
# """
|
438 |
-
# from elasticsearch import Elasticsearch
|
439 |
-
#
|
440 |
-
# # Create an Elasticsearch client instance
|
441 |
-
# es = Elasticsearch(elasticsearch_url)
|
442 |
-
#
|
443 |
-
# # Define the index settings and mappings
|
444 |
-
# settings = {
|
445 |
-
# "analysis": {"analyzer": {"default": {"type": "standard"}}},
|
446 |
-
# "similarity": {
|
447 |
-
# "custom_bm25": {
|
448 |
-
# "type": "BM25",
|
449 |
-
# "k1": k1,
|
450 |
-
# "b": b,
|
451 |
-
# }
|
452 |
-
# },
|
453 |
-
# }
|
454 |
-
# mappings = {
|
455 |
-
# "properties": {
|
456 |
-
# "content": {
|
457 |
-
# "type": "text",
|
458 |
-
# "similarity": "custom_bm25", # Use the custom BM25 similarity
|
459 |
-
# }
|
460 |
-
# }
|
461 |
-
# }
|
462 |
-
#
|
463 |
-
# # Create the index with the specified settings and mappings
|
464 |
-
# es.indices.create(index=index_name, mappings=mappings, settings=settings)
|
465 |
-
# return cls(client=es, index_name=index_name)
|
466 |
-
#
|
467 |
-
# def add_texts(
|
468 |
-
# self,
|
469 |
-
# texts: Iterable[str],
|
470 |
-
# refresh_indices: bool = True,
|
471 |
-
# ) -> List[str]:
|
472 |
-
# """Run more texts through the embeddings and add to the retriever.
|
473 |
-
#
|
474 |
-
# Args:
|
475 |
-
# texts: Iterable of strings to add to the retriever.
|
476 |
-
# refresh_indices: bool to refresh ElasticSearch indices
|
477 |
-
#
|
478 |
-
# Returns:
|
479 |
-
# List of ids from adding the texts into the retriever.
|
480 |
-
# """
|
481 |
-
# try:
|
482 |
-
# from elasticsearch.helpers import bulk
|
483 |
-
# except ImportError:
|
484 |
-
# raise ImportError(
|
485 |
-
# "Could not import elasticsearch python package. "
|
486 |
-
# "Please install it with `pip install elasticsearch`."
|
487 |
-
# )
|
488 |
-
# requests = []
|
489 |
-
# ids = []
|
490 |
-
# for i, text in enumerate(texts):
|
491 |
-
# _id = str(uuid.uuid4())
|
492 |
-
# request = {
|
493 |
-
# "_op_type": "index",
|
494 |
-
# "_index": self.index_name,
|
495 |
-
# "content": text,
|
496 |
-
# "_id": _id,
|
497 |
-
# }
|
498 |
-
# ids.append(_id)
|
499 |
-
# requests.append(request)
|
500 |
-
# bulk(self.client, requests)
|
501 |
-
#
|
502 |
-
# if refresh_indices:
|
503 |
-
# self.client.indices.refresh(index=self.index_name)
|
504 |
-
# return ids
|
505 |
-
#
|
506 |
-
# def _get_relevant_documents(
|
507 |
-
# self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
508 |
-
# ) -> List[Document]:
|
509 |
-
# query_dict = {"query": {"match": {"content": query}}}
|
510 |
-
# res = self.client.search(index=self.index_name, body=query_dict)
|
511 |
-
#
|
512 |
-
# docs = []
|
513 |
-
# for r in res["hits"]["hits"]:
|
514 |
-
# docs.append(Document(page_content=r["_source"]["content"]))
|
515 |
-
# return docs
|
516 |
-
############################################################################################################
|
517 |
-
|
518 |
-
|
519 |
-
############################################################################################################
|
520 |
-
# Multi Query Retriever
|
521 |
-
# class MultiQueryRetriever(BaseRetriever):
|
522 |
-
# """Given a query, use an LLM to write a set of queries.
|
523 |
-
#
|
524 |
-
# Retrieve docs for each query. Return the unique union of all retrieved docs.
|
525 |
-
# """
|
526 |
-
#
|
527 |
-
# retriever: BaseRetriever
|
528 |
-
# llm_chain: Runnable
|
529 |
-
# verbose: bool = True
|
530 |
-
# parser_key: str = "lines"
|
531 |
-
# """DEPRECATED. parser_key is no longer used and should not be specified."""
|
532 |
-
# include_original: bool = False
|
533 |
-
# """Whether to include the original query in the list of generated queries."""
|
534 |
-
#
|
535 |
-
# @classmethod
|
536 |
-
# def from_llm(
|
537 |
-
# cls,
|
538 |
-
# retriever: BaseRetriever,
|
539 |
-
# llm: BaseLanguageModel,
|
540 |
-
# prompt: BasePromptTemplate = DEFAULT_QUERY_PROMPT,
|
541 |
-
# parser_key: Optional[str] = None,
|
542 |
-
# include_original: bool = False,
|
543 |
-
# ) -> "MultiQueryRetriever":
|
544 |
-
# """Initialize from llm using default template.
|
545 |
-
#
|
546 |
-
# Args:
|
547 |
-
# retriever: retriever to query documents from
|
548 |
-
# llm: llm for query generation using DEFAULT_QUERY_PROMPT
|
549 |
-
# prompt: The prompt which aims to generate several different versions
|
550 |
-
# of the given user query
|
551 |
-
# include_original: Whether to include the original query in the list of
|
552 |
-
# generated queries.
|
553 |
-
#
|
554 |
-
# Returns:
|
555 |
-
# MultiQueryRetriever
|
556 |
-
# """
|
557 |
-
# output_parser = LineListOutputParser()
|
558 |
-
# llm_chain = prompt | llm | output_parser
|
559 |
-
# return cls(
|
560 |
-
# retriever=retriever,
|
561 |
-
# llm_chain=llm_chain,
|
562 |
-
# include_original=include_original,
|
563 |
-
# )
|
564 |
-
#
|
565 |
-
# async def _aget_relevant_documents(
|
566 |
-
# self,
|
567 |
-
# query: str,
|
568 |
-
# *,
|
569 |
-
# run_manager: AsyncCallbackManagerForRetrieverRun,
|
570 |
-
# ) -> List[Document]:
|
571 |
-
# """Get relevant documents given a user query.
|
572 |
-
#
|
573 |
-
# Args:
|
574 |
-
# query: user query
|
575 |
-
#
|
576 |
-
# Returns:
|
577 |
-
# Unique union of relevant documents from all generated queries
|
578 |
-
# """
|
579 |
-
# queries = await self.agenerate_queries(query, run_manager)
|
580 |
-
# if self.include_original:
|
581 |
-
# queries.append(query)
|
582 |
-
# documents = await self.aretrieve_documents(queries, run_manager)
|
583 |
-
# return self.unique_union(documents)
|
584 |
-
#
|
585 |
-
# async def agenerate_queries(
|
586 |
-
# self, question: str, run_manager: AsyncCallbackManagerForRetrieverRun
|
587 |
-
# ) -> List[str]:
|
588 |
-
# """Generate queries based upon user input.
|
589 |
-
#
|
590 |
-
# Args:
|
591 |
-
# question: user query
|
592 |
-
#
|
593 |
-
# Returns:
|
594 |
-
# List of LLM generated queries that are similar to the user input
|
595 |
-
# """
|
596 |
-
# response = await self.llm_chain.ainvoke(
|
597 |
-
# {"question": question}, config={"callbacks": run_manager.get_child()}
|
598 |
-
# )
|
599 |
-
# if isinstance(self.llm_chain, LLMChain):
|
600 |
-
# lines = response["text"]
|
601 |
-
# else:
|
602 |
-
# lines = response
|
603 |
-
# if self.verbose:
|
604 |
-
# logger.info(f"Generated queries: {lines}")
|
605 |
-
# return lines
|
606 |
-
#
|
607 |
-
# async def aretrieve_documents(
|
608 |
-
# self, queries: List[str], run_manager: AsyncCallbackManagerForRetrieverRun
|
609 |
-
# ) -> List[Document]:
|
610 |
-
# """Run all LLM generated queries.
|
611 |
-
#
|
612 |
-
# Args:
|
613 |
-
# queries: query list
|
614 |
-
#
|
615 |
-
# Returns:
|
616 |
-
# List of retrieved Documents
|
617 |
-
# """
|
618 |
-
# document_lists = await asyncio.gather(
|
619 |
-
# *(
|
620 |
-
# self.retriever.ainvoke(
|
621 |
-
# query, config={"callbacks": run_manager.get_child()}
|
622 |
-
# )
|
623 |
-
# for query in queries
|
624 |
-
# )
|
625 |
-
# )
|
626 |
-
# return [doc for docs in document_lists for doc in docs]
|
627 |
-
#
|
628 |
-
# def _get_relevant_documents(
|
629 |
-
# self,
|
630 |
-
# query: str,
|
631 |
-
# *,
|
632 |
-
# run_manager: CallbackManagerForRetrieverRun,
|
633 |
-
# ) -> List[Document]:
|
634 |
-
# """Get relevant documents given a user query.
|
635 |
-
#
|
636 |
-
# Args:
|
637 |
-
# query: user query
|
638 |
-
#
|
639 |
-
# Returns:
|
640 |
-
# Unique union of relevant documents from all generated queries
|
641 |
-
# """
|
642 |
-
# queries = self.generate_queries(query, run_manager)
|
643 |
-
# if self.include_original:
|
644 |
-
# queries.append(query)
|
645 |
-
# documents = self.retrieve_documents(queries, run_manager)
|
646 |
-
# return self.unique_union(documents)
|
647 |
-
#
|
648 |
-
# def generate_queries(
|
649 |
-
# self, question: str, run_manager: CallbackManagerForRetrieverRun
|
650 |
-
# ) -> List[str]:
|
651 |
-
# """Generate queries based upon user input.
|
652 |
-
#
|
653 |
-
# Args:
|
654 |
-
# question: user query
|
655 |
-
#
|
656 |
-
# Returns:
|
657 |
-
# List of LLM generated queries that are similar to the user input
|
658 |
-
# """
|
659 |
-
# response = self.llm_chain.invoke(
|
660 |
-
# {"question": question}, config={"callbacks": run_manager.get_child()}
|
661 |
-
# )
|
662 |
-
# if isinstance(self.llm_chain, LLMChain):
|
663 |
-
# lines = response["text"]
|
664 |
-
# else:
|
665 |
-
# lines = response
|
666 |
-
# if self.verbose:
|
667 |
-
# logger.info(f"Generated queries: {lines}")
|
668 |
-
# return lines
|
669 |
-
#
|
670 |
-
# def retrieve_documents(
|
671 |
-
# self, queries: List[str], run_manager: CallbackManagerForRetrieverRun
|
672 |
-
# ) -> List[Document]:
|
673 |
-
# """Run all LLM generated queries.
|
674 |
-
#
|
675 |
-
# Args:
|
676 |
-
# queries: query list
|
677 |
-
#
|
678 |
-
# Returns:
|
679 |
-
# List of retrieved Documents
|
680 |
-
# """
|
681 |
-
# documents = []
|
682 |
-
# for query in queries:
|
683 |
-
# docs = self.retriever.invoke(
|
684 |
-
# query, config={"callbacks": run_manager.get_child()}
|
685 |
-
# )
|
686 |
-
# documents.extend(docs)
|
687 |
-
# return documents
|
688 |
-
#
|
689 |
-
# def unique_union(self, documents: List[Document]) -> List[Document]:
|
690 |
-
# """Get unique Documents.
|
691 |
-
#
|
692 |
-
# Args:
|
693 |
-
# documents: List of retrieved Documents
|
694 |
-
#
|
695 |
-
# Returns:
|
696 |
-
# List of unique retrieved Documents
|
697 |
-
# """
|
698 |
-
# return _unique_documents(documents)
|
699 |
-
############################################################################################################
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
############################################################################################################
|
709 |
-
# ElasticSearch Retriever
|
710 |
-
|
711 |
-
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-elasticsearch
|
712 |
-
#
|
713 |
-
# https://github.com/langchain-ai/langchain/tree/44e3e2391c48bfd0a8e6a20adde0b6567f4f43c3/templates/rag-self-query
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|