Spaces:
Runtime error
Runtime error
Update App_Function_Libraries/LLM_API_Calls.py
Browse files- App_Function_Libraries/LLM_API_Calls.py +965 -976
App_Function_Libraries/LLM_API_Calls.py
CHANGED
|
@@ -1,977 +1,966 @@
|
|
| 1 |
-
# Summarization_General_Lib.py
|
| 2 |
-
#########################################
|
| 3 |
-
# General Summarization Library
|
| 4 |
-
# This library is used to perform summarization.
|
| 5 |
-
#
|
| 6 |
-
####
|
| 7 |
-
####################
|
| 8 |
-
# Function List
|
| 9 |
-
#
|
| 10 |
-
# 1. extract_text_from_segments(segments: List[Dict]) -> str
|
| 11 |
-
# 2. chat_with_openai(api_key, file_path, custom_prompt_arg)
|
| 12 |
-
# 3. chat_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
|
| 13 |
-
# 4. chat_with_cohere(api_key, file_path, model, custom_prompt_arg)
|
| 14 |
-
# 5. chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None):
|
| 15 |
-
# 6. chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None)
|
| 16 |
-
# 7. chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None)
|
| 17 |
-
# 8. chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None)
|
| 18 |
-
# 9. chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None)
|
| 19 |
-
#
|
| 20 |
-
#
|
| 21 |
-
####################
|
| 22 |
-
#
|
| 23 |
-
# Import necessary libraries
|
| 24 |
-
import json
|
| 25 |
-
import logging
|
| 26 |
-
import os
|
| 27 |
-
import time
|
| 28 |
-
from typing import List
|
| 29 |
-
|
| 30 |
-
import requests
|
| 31 |
-
#
|
| 32 |
-
# Import 3rd-Party Libraries
|
| 33 |
-
from requests import RequestException
|
| 34 |
-
#
|
| 35 |
-
# Import Local libraries
|
| 36 |
-
from App_Function_Libraries.Utils.Utils import load_and_log_configs
|
| 37 |
-
#
|
| 38 |
-
#######################################################################################################################
|
| 39 |
-
# Function Definitions
|
| 40 |
-
#
|
| 41 |
-
|
| 42 |
-
#FIXME: Update to include full arguments
|
| 43 |
-
|
| 44 |
-
def extract_text_from_segments(segments):
|
| 45 |
-
logging.debug(f"Segments received: {segments}")
|
| 46 |
-
logging.debug(f"Type of segments: {type(segments)}")
|
| 47 |
-
|
| 48 |
-
text = ""
|
| 49 |
-
|
| 50 |
-
if isinstance(segments, list):
|
| 51 |
-
for segment in segments:
|
| 52 |
-
logging.debug(f"Current segment: {segment}")
|
| 53 |
-
logging.debug(f"Type of segment: {type(segment)}")
|
| 54 |
-
if 'Text' in segment:
|
| 55 |
-
text += segment['Text'] + " "
|
| 56 |
-
else:
|
| 57 |
-
logging.warning(f"Skipping segment due to missing 'Text' key: {segment}")
|
| 58 |
-
else:
|
| 59 |
-
logging.warning(f"Unexpected type of 'segments': {type(segments)}")
|
| 60 |
-
|
| 61 |
-
return text.strip()
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
def get_openai_embeddings(input_data: str, model: str) -> List[float]:
|
| 66 |
-
"""
|
| 67 |
-
Get embeddings for the input text from OpenAI API.
|
| 68 |
-
|
| 69 |
-
Args:
|
| 70 |
-
input_data (str): The input text to get embeddings for.
|
| 71 |
-
model (str): The model to use for generating embeddings.
|
| 72 |
-
|
| 73 |
-
Returns:
|
| 74 |
-
List[float]: The embeddings generated by the API.
|
| 75 |
-
"""
|
| 76 |
-
loaded_config_data = load_and_log_configs()
|
| 77 |
-
api_key = loaded_config_data['api_keys']['openai']
|
| 78 |
-
|
| 79 |
-
if not api_key:
|
| 80 |
-
logging.error("OpenAI: API key not found or is empty")
|
| 81 |
-
raise ValueError("OpenAI: API Key Not Provided/Found in Config file or is empty")
|
| 82 |
-
|
| 83 |
-
logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
| 84 |
-
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
|
| 85 |
-
logging.debug(f"OpenAI: Using model: {model}")
|
| 86 |
-
|
| 87 |
-
headers = {
|
| 88 |
-
'Authorization': f'Bearer {api_key}',
|
| 89 |
-
'Content-Type': 'application/json'
|
| 90 |
-
}
|
| 91 |
-
|
| 92 |
-
request_data = {
|
| 93 |
-
"input": input_data,
|
| 94 |
-
"model": model,
|
| 95 |
-
}
|
| 96 |
-
|
| 97 |
-
try:
|
| 98 |
-
logging.debug("OpenAI: Posting request to embeddings API")
|
| 99 |
-
response = requests.post('https://api.openai.com/v1/embeddings', headers=headers, json=request_data)
|
| 100 |
-
logging.debug(f"Full API response data: {response}")
|
| 101 |
-
if response.status_code == 200:
|
| 102 |
-
response_data = response.json()
|
| 103 |
-
if 'data' in response_data and len(response_data['data']) > 0:
|
| 104 |
-
embedding = response_data['data'][0]['embedding']
|
| 105 |
-
logging.debug("OpenAI: Embeddings retrieved successfully")
|
| 106 |
-
return embedding
|
| 107 |
-
else:
|
| 108 |
-
logging.warning("OpenAI: Embedding data not found in the response")
|
| 109 |
-
raise ValueError("OpenAI: Embedding data not available in the response")
|
| 110 |
-
else:
|
| 111 |
-
logging.error(f"OpenAI: Embeddings request failed with status code {response.status_code}")
|
| 112 |
-
logging.error(f"OpenAI: Error response: {response.text}")
|
| 113 |
-
raise ValueError(f"OpenAI: Failed to retrieve embeddings. Status code: {response.status_code}")
|
| 114 |
-
except requests.RequestException as e:
|
| 115 |
-
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
|
| 116 |
-
raise ValueError(f"OpenAI: Error making API request: {str(e)}")
|
| 117 |
-
except Exception as e:
|
| 118 |
-
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
|
| 119 |
-
raise ValueError(f"OpenAI: Unexpected error occurred: {str(e)}")
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
def chat_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
| 123 |
-
loaded_config_data = load_and_log_configs()
|
| 124 |
-
openai_api_key = api_key
|
| 125 |
-
try:
|
| 126 |
-
# API key validation
|
| 127 |
-
if not openai_api_key:
|
| 128 |
-
logging.info("OpenAI: API key not provided as parameter")
|
| 129 |
-
logging.info("OpenAI: Attempting to use API key from config file")
|
| 130 |
-
openai_api_key = loaded_config_data['api_keys']['openai']
|
| 131 |
-
|
| 132 |
-
if not openai_api_key:
|
| 133 |
-
logging.error("OpenAI: API key not found or is empty")
|
| 134 |
-
return "OpenAI: API Key Not Provided/Found in Config file or is empty"
|
| 135 |
-
|
| 136 |
-
logging.debug(f"OpenAI: Using API Key: {openai_api_key[:5]}...{openai_api_key[-5:]}")
|
| 137 |
-
|
| 138 |
-
# Input data handling
|
| 139 |
-
logging.debug(f"OpenAI: Raw input data type: {type(input_data)}")
|
| 140 |
-
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
|
| 141 |
-
|
| 142 |
-
if isinstance(input_data, str):
|
| 143 |
-
if input_data.strip().startswith('{'):
|
| 144 |
-
# It's likely a JSON string
|
| 145 |
-
logging.debug("OpenAI: Parsing provided JSON string data for summarization")
|
| 146 |
-
try:
|
| 147 |
-
data = json.loads(input_data)
|
| 148 |
-
except json.JSONDecodeError as e:
|
| 149 |
-
logging.error(f"OpenAI: Error parsing JSON string: {str(e)}")
|
| 150 |
-
return f"OpenAI: Error parsing JSON input: {str(e)}"
|
| 151 |
-
elif os.path.isfile(input_data):
|
| 152 |
-
logging.debug("OpenAI: Loading JSON data from file for summarization")
|
| 153 |
-
with open(input_data, 'r') as file:
|
| 154 |
-
data = json.load(file)
|
| 155 |
-
else:
|
| 156 |
-
logging.debug("OpenAI: Using provided string data for summarization")
|
| 157 |
-
data = input_data
|
| 158 |
-
else:
|
| 159 |
-
data = input_data
|
| 160 |
-
|
| 161 |
-
logging.debug(f"OpenAI: Processed data type: {type(data)}")
|
| 162 |
-
logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...")
|
| 163 |
-
|
| 164 |
-
# Text extraction
|
| 165 |
-
if isinstance(data, dict):
|
| 166 |
-
if 'summary' in data:
|
| 167 |
-
logging.debug("OpenAI: Summary already exists in the loaded data")
|
| 168 |
-
return data['summary']
|
| 169 |
-
elif 'segments' in data:
|
| 170 |
-
text = extract_text_from_segments(data['segments'])
|
| 171 |
-
else:
|
| 172 |
-
text = json.dumps(data) # Convert dict to string if no specific format
|
| 173 |
-
elif isinstance(data, list):
|
| 174 |
-
text = extract_text_from_segments(data)
|
| 175 |
-
elif isinstance(data, str):
|
| 176 |
-
text = data
|
| 177 |
-
else:
|
| 178 |
-
raise ValueError(f"OpenAI: Invalid input data format: {type(data)}")
|
| 179 |
-
|
| 180 |
-
logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...")
|
| 181 |
-
logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}")
|
| 182 |
-
|
| 183 |
-
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
|
| 184 |
-
logging.debug(f"OpenAI: Using model: {openai_model}")
|
| 185 |
-
|
| 186 |
-
headers = {
|
| 187 |
-
'Authorization': f'Bearer {openai_api_key}',
|
| 188 |
-
'Content-Type': 'application/json'
|
| 189 |
-
}
|
| 190 |
-
|
| 191 |
-
logging.debug(
|
| 192 |
-
f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")
|
| 193 |
-
logging.debug("openai: Preparing data + prompt for submittal")
|
| 194 |
-
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
| 195 |
-
if temp is None:
|
| 196 |
-
temp = 0.7
|
| 197 |
-
if system_message is None:
|
| 198 |
-
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
| 199 |
-
temp = float(temp)
|
| 200 |
-
data = {
|
| 201 |
-
"model": openai_model,
|
| 202 |
-
"messages": [
|
| 203 |
-
{"role": "system", "content": system_message},
|
| 204 |
-
{"role": "user", "content": openai_prompt}
|
| 205 |
-
],
|
| 206 |
-
"max_tokens": 4096,
|
| 207 |
-
"temperature": temp
|
| 208 |
-
}
|
| 209 |
-
|
| 210 |
-
logging.debug("OpenAI: Posting request")
|
| 211 |
-
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
|
| 212 |
-
logging.debug(f"Full API response data: {response}")
|
| 213 |
-
if response.status_code == 200:
|
| 214 |
-
response_data = response.json()
|
| 215 |
-
logging.debug(response_data)
|
| 216 |
-
if 'choices' in response_data and len(response_data['choices']) > 0:
|
| 217 |
-
chat_response = response_data['choices'][0]['message']['content'].strip()
|
| 218 |
-
logging.debug("openai: Chat Sent successfully")
|
| 219 |
-
logging.debug(f"openai: Chat response: {chat_response}")
|
| 220 |
-
return chat_response
|
| 221 |
-
else:
|
| 222 |
-
logging.warning("openai: Chat response not found in the response data")
|
| 223 |
-
return "openai: Chat not available"
|
| 224 |
-
else:
|
| 225 |
-
logging.error(f"OpenAI: Chat request failed with status code {response.status_code}")
|
| 226 |
-
logging.error(f"OpenAI: Error response: {response.text}")
|
| 227 |
-
return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
|
| 228 |
-
except json.JSONDecodeError as e:
|
| 229 |
-
logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True)
|
| 230 |
-
return f"OpenAI: Error decoding JSON input: {str(e)}"
|
| 231 |
-
except requests.RequestException as e:
|
| 232 |
-
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
|
| 233 |
-
return f"OpenAI: Error making API request: {str(e)}"
|
| 234 |
-
except Exception as e:
|
| 235 |
-
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
|
| 236 |
-
return f"OpenAI: Unexpected error occurred: {str(e)}"
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
def chat_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5, system_prompt=None):
|
| 240 |
-
try:
|
| 241 |
-
loaded_config_data = load_and_log_configs()
|
| 242 |
-
global anthropic_api_key
|
| 243 |
-
anthropic_api_key = api_key
|
| 244 |
-
# API key validation
|
| 245 |
-
if not api_key:
|
| 246 |
-
logging.info("Anthropic: API key not provided as parameter")
|
| 247 |
-
logging.info("Anthropic: Attempting to use API key from config file")
|
| 248 |
-
anthropic_api_key = loaded_config_data['api_keys']['anthropic']
|
| 249 |
-
|
| 250 |
-
if not api_key or api_key.strip() == "":
|
| 251 |
-
logging.error("Anthropic: API key not found or is empty")
|
| 252 |
-
return "Anthropic: API Key Not Provided/Found in Config file or is empty"
|
| 253 |
-
|
| 254 |
-
logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
| 255 |
-
|
| 256 |
-
if system_prompt is not None:
|
| 257 |
-
logging.debug("Anthropic: Using provided system prompt")
|
| 258 |
-
pass
|
| 259 |
-
else:
|
| 260 |
-
system_prompt = "You are a helpful assistant"
|
| 261 |
-
|
| 262 |
-
logging.debug(f"AnthropicAI: Loaded data: {input_data}")
|
| 263 |
-
logging.debug(f"AnthropicAI: Type of data: {type(input_data)}")
|
| 264 |
-
|
| 265 |
-
anthropic_model = loaded_config_data['models']['anthropic']
|
| 266 |
-
|
| 267 |
-
headers = {
|
| 268 |
-
'x-api-key': anthropic_api_key,
|
| 269 |
-
'anthropic-version': '2023-06-01',
|
| 270 |
-
'Content-Type': 'application/json'
|
| 271 |
-
}
|
| 272 |
-
|
| 273 |
-
anthropic_user_prompt = custom_prompt_arg
|
| 274 |
-
logging.debug(f"Anthropic: User Prompt is {anthropic_user_prompt}")
|
| 275 |
-
user_message = {
|
| 276 |
-
"role": "user",
|
| 277 |
-
"content": f"{input_data} \n\n\n\n{anthropic_user_prompt}"
|
| 278 |
-
}
|
| 279 |
-
|
| 280 |
-
data = {
|
| 281 |
-
"model": model,
|
| 282 |
-
"max_tokens": 4096, # max _possible_ tokens to return
|
| 283 |
-
"messages": [user_message],
|
| 284 |
-
"stop_sequences": ["\n\nHuman:"],
|
| 285 |
-
"temperature": 0.1,
|
| 286 |
-
"top_k": 0,
|
| 287 |
-
"top_p": 1.0,
|
| 288 |
-
"metadata": {
|
| 289 |
-
"user_id": "example_user_id",
|
| 290 |
-
},
|
| 291 |
-
"stream": False,
|
| 292 |
-
"system": f"{system_prompt}"
|
| 293 |
-
}
|
| 294 |
-
|
| 295 |
-
for attempt in range(max_retries):
|
| 296 |
-
try:
|
| 297 |
-
logging.debug("anthropic: Posting request to API")
|
| 298 |
-
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
|
| 299 |
-
logging.debug(f"Full API response data: {response}")
|
| 300 |
-
# Check if the status code indicates success
|
| 301 |
-
if response.status_code == 200:
|
| 302 |
-
logging.debug("anthropic: Post submittal successful")
|
| 303 |
-
response_data = response.json()
|
| 304 |
-
try:
|
| 305 |
-
chat_response = response_data['content'][0]['text'].strip()
|
| 306 |
-
logging.debug("anthropic: Chat request successful")
|
| 307 |
-
print("Chat request processed successfully.")
|
| 308 |
-
return chat_response
|
| 309 |
-
except (IndexError, KeyError) as e:
|
| 310 |
-
logging.debug("anthropic: Unexpected data in response")
|
| 311 |
-
print("Unexpected response format from Anthropic API:", response.text)
|
| 312 |
-
return None
|
| 313 |
-
elif response.status_code == 500: # Handle internal server error specifically
|
| 314 |
-
logging.debug("anthropic: Internal server error")
|
| 315 |
-
print("Internal server error from API. Retrying may be necessary.")
|
| 316 |
-
time.sleep(retry_delay)
|
| 317 |
-
else:
|
| 318 |
-
logging.debug(
|
| 319 |
-
f"anthropic: Failed to process chat request, status code {response.status_code}: {response.text}")
|
| 320 |
-
print(f"Failed to process chat request, status code {response.status_code}: {response.text}")
|
| 321 |
-
return None
|
| 322 |
-
|
| 323 |
-
except RequestException as e:
|
| 324 |
-
logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
|
| 325 |
-
if attempt < max_retries - 1:
|
| 326 |
-
time.sleep(retry_delay)
|
| 327 |
-
else:
|
| 328 |
-
return f"anthropic: Network error: {str(e)}"
|
| 329 |
-
except Exception as e:
|
| 330 |
-
logging.error(f"anthropic: Error in processing: {str(e)}")
|
| 331 |
-
return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}"
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
# Summarize with Cohere
|
| 335 |
-
def chat_with_cohere(api_key, input_data, model, custom_prompt_arg, system_prompt=None):
|
| 336 |
-
loaded_config_data = load_and_log_configs()
|
| 337 |
-
if api_key is not None:
|
| 338 |
-
logging.debug(f"Cohere Chat: API Key from parameter: {api_key[:3]}...{api_key[-3:]}")
|
| 339 |
-
logging.debug(f"Cohere Chat: Cohere API Key from config: {loaded_config_data['api_keys']['cohere']}")
|
| 340 |
-
try:
|
| 341 |
-
# API key validation
|
| 342 |
-
if api_key is None:
|
| 343 |
-
logging.info("Cohere Chat: API key not provided as parameter")
|
| 344 |
-
logging.info("Cohere Chat: Attempting to use API key from config file")
|
| 345 |
-
cohere_api_key = loaded_config_data.get('api_keys', {}).get('cohere')
|
| 346 |
-
if not cohere_api_key:
|
| 347 |
-
logging.error("Cohere Chat: API key not found or is empty")
|
| 348 |
-
return "Cohere Chat: API Key Not Provided/Found in Config file or is empty"
|
| 349 |
-
|
| 350 |
-
logging.debug(f"Cohere Chat: Using API Key: {cohere_api_key[:3]}...{cohere_api_key[-3:]}")
|
| 351 |
-
|
| 352 |
-
logging.debug(f"Cohere Chat: Loaded data: {input_data}")
|
| 353 |
-
logging.debug(f"Cohere Chat: Type of data: {type(input_data)}")
|
| 354 |
-
|
| 355 |
-
# Ensure model is set
|
| 356 |
-
if not model:
|
| 357 |
-
model = loaded_config_data['models']['cohere']
|
| 358 |
-
logging.debug(f"Cohere Chat: Using model: {model}")
|
| 359 |
-
|
| 360 |
-
headers = {
|
| 361 |
-
'accept': 'application/json',
|
| 362 |
-
'content-type': 'application/json',
|
| 363 |
-
'Authorization': f'Bearer {cohere_api_key}'
|
| 364 |
-
}
|
| 365 |
-
|
| 366 |
-
# Ensure system_prompt is set
|
| 367 |
-
if not system_prompt:
|
| 368 |
-
system_prompt = "You are a helpful assistant"
|
| 369 |
-
logging.debug(f"Cohere Chat: System Prompt being sent is: '{system_prompt}'")
|
| 370 |
-
|
| 371 |
-
cohere_prompt = input_data
|
| 372 |
-
if custom_prompt_arg:
|
| 373 |
-
cohere_prompt += f"\n\n{custom_prompt_arg}"
|
| 374 |
-
logging.debug(f"Cohere Chat: User Prompt being sent is: '{cohere_prompt}'")
|
| 375 |
-
|
| 376 |
-
data = {
|
| 377 |
-
"chat_history": [
|
| 378 |
-
{"role": "SYSTEM", "message": system_prompt},
|
| 379 |
-
],
|
| 380 |
-
"message": cohere_prompt,
|
| 381 |
-
"model": model,
|
| 382 |
-
"connectors": [{"id": "web-search"}]
|
| 383 |
-
}
|
| 384 |
-
logging.debug(f"Cohere Chat: Request data: {json.dumps(data, indent=2)}")
|
| 385 |
-
|
| 386 |
-
logging.debug("cohere chat: Submitting request to API endpoint")
|
| 387 |
-
print("cohere chat: Submitting request to API endpoint")
|
| 388 |
-
|
| 389 |
-
try:
|
| 390 |
-
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data)
|
| 391 |
-
logging.debug(f"Cohere Chat: Raw API response: {response.text}")
|
| 392 |
-
except requests.RequestException as e:
|
| 393 |
-
logging.error(f"Cohere Chat: Error making API request: {str(e)}")
|
| 394 |
-
return f"Cohere Chat: Error making API request: {str(e)}"
|
| 395 |
-
|
| 396 |
-
if response.status_code == 200:
|
| 397 |
-
try:
|
| 398 |
-
response_data = response.json()
|
| 399 |
-
except json.JSONDecodeError:
|
| 400 |
-
logging.error("Cohere Chat: Failed to decode JSON response")
|
| 401 |
-
return "Cohere Chat: Failed to decode JSON response"
|
| 402 |
-
|
| 403 |
-
if response_data is None:
|
| 404 |
-
logging.error("Cohere Chat: No response data received.")
|
| 405 |
-
return "Cohere Chat: No response data received."
|
| 406 |
-
|
| 407 |
-
logging.debug(f"cohere chat: Full API response data: {json.dumps(response_data, indent=2)}")
|
| 408 |
-
|
| 409 |
-
if 'text' in response_data:
|
| 410 |
-
chat_response = response_data['text'].strip()
|
| 411 |
-
logging.debug("Cohere Chat: Chat request successful")
|
| 412 |
-
print("Cohere Chat request processed successfully.")
|
| 413 |
-
return chat_response
|
| 414 |
-
else:
|
| 415 |
-
logging.error("Cohere Chat: Expected 'text' key not found in API response.")
|
| 416 |
-
return "Cohere Chat: Expected data not found in API response."
|
| 417 |
-
else:
|
| 418 |
-
logging.error(f"Cohere Chat: API request failed with status code {response.status_code}: {response.text}")
|
| 419 |
-
print(f"Cohere Chat: Failed to process chat response, status code {response.status_code}: {response.text}")
|
| 420 |
-
return f"Cohere Chat: API request failed: {response.text}"
|
| 421 |
-
|
| 422 |
-
except Exception as e:
|
| 423 |
-
logging.error(f"Cohere Chat: Error in processing: {str(e)}", exc_info=True)
|
| 424 |
-
return f"Cohere Chat: Error occurred while processing chat request with Cohere: {str(e)}"
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
# https://console.groq.com/docs/quickstart
|
| 428 |
-
def chat_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
| 429 |
-
logging.debug("Groq: Summarization process starting...")
|
| 430 |
-
try:
|
| 431 |
-
logging.debug("Groq: Loading and validating configurations")
|
| 432 |
-
loaded_config_data = load_and_log_configs()
|
| 433 |
-
if loaded_config_data is None:
|
| 434 |
-
logging.error("Failed to load configuration data")
|
| 435 |
-
groq_api_key = None
|
| 436 |
-
else:
|
| 437 |
-
# Prioritize the API key passed as a parameter
|
| 438 |
-
if api_key and api_key.strip():
|
| 439 |
-
groq_api_key = api_key
|
| 440 |
-
logging.info("Groq: Using API key provided as parameter")
|
| 441 |
-
else:
|
| 442 |
-
# If no parameter is provided, use the key from the config
|
| 443 |
-
groq_api_key = loaded_config_data['api_keys'].get('groq')
|
| 444 |
-
if groq_api_key:
|
| 445 |
-
logging.info("Groq: Using API key from config file")
|
| 446 |
-
else:
|
| 447 |
-
logging.warning("Groq: No API key found in config file")
|
| 448 |
-
|
| 449 |
-
# Final check to ensure we have a valid API key
|
| 450 |
-
if not groq_api_key or not groq_api_key.strip():
|
| 451 |
-
logging.error("Anthropic: No valid API key available")
|
| 452 |
-
# You might want to raise an exception here or handle this case as appropriate for your application
|
| 453 |
-
# For example: raise ValueError("No valid Anthropic API key available")
|
| 454 |
-
|
| 455 |
-
logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}")
|
| 456 |
-
|
| 457 |
-
# Transcript data handling & Validation
|
| 458 |
-
if isinstance(input_data, str) and os.path.isfile(input_data):
|
| 459 |
-
logging.debug("Groq: Loading json data for summarization")
|
| 460 |
-
with open(input_data, 'r') as file:
|
| 461 |
-
data = json.load(file)
|
| 462 |
-
else:
|
| 463 |
-
logging.debug("Groq: Using provided string data for summarization")
|
| 464 |
-
data = input_data
|
| 465 |
-
|
| 466 |
-
# DEBUG - Debug logging to identify sent data
|
| 467 |
-
logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)")
|
| 468 |
-
logging.debug(f"Groq: Type of data: {type(data)}")
|
| 469 |
-
|
| 470 |
-
if isinstance(data, dict) and 'summary' in data:
|
| 471 |
-
# If the loaded data is a dictionary and already contains a summary, return it
|
| 472 |
-
logging.debug("Groq: Summary already exists in the loaded data")
|
| 473 |
-
return data['summary']
|
| 474 |
-
|
| 475 |
-
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
|
| 476 |
-
if isinstance(data, list):
|
| 477 |
-
segments = data
|
| 478 |
-
text = extract_text_from_segments(segments)
|
| 479 |
-
elif isinstance(data, str):
|
| 480 |
-
text = data
|
| 481 |
-
else:
|
| 482 |
-
raise ValueError("Groq: Invalid input data format")
|
| 483 |
-
|
| 484 |
-
# Set the model to be used
|
| 485 |
-
groq_model = loaded_config_data['models']['groq']
|
| 486 |
-
|
| 487 |
-
if temp is None:
|
| 488 |
-
temp = 0.2
|
| 489 |
-
temp = float(temp)
|
| 490 |
-
if system_message is None:
|
| 491 |
-
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
| 492 |
-
|
| 493 |
-
headers = {
|
| 494 |
-
'Authorization': f'Bearer {groq_api_key}',
|
| 495 |
-
'Content-Type': 'application/json'
|
| 496 |
-
}
|
| 497 |
-
|
| 498 |
-
groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
| 499 |
-
logging.debug("groq: Prompt being sent is {groq_prompt}")
|
| 500 |
-
|
| 501 |
-
data = {
|
| 502 |
-
"messages": [
|
| 503 |
-
{
|
| 504 |
-
"role": "system",
|
| 505 |
-
"content": system_message,
|
| 506 |
-
},
|
| 507 |
-
{
|
| 508 |
-
"role": "user",
|
| 509 |
-
"content": groq_prompt,
|
| 510 |
-
}
|
| 511 |
-
],
|
| 512 |
-
"model": groq_model,
|
| 513 |
-
"temperature": temp
|
| 514 |
-
}
|
| 515 |
-
|
| 516 |
-
logging.debug("groq: Submitting request to API endpoint")
|
| 517 |
-
print("groq: Submitting request to API endpoint")
|
| 518 |
-
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)
|
| 519 |
-
|
| 520 |
-
response_data = response.json()
|
| 521 |
-
logging.debug(f"Full API response data: {response_data}")
|
| 522 |
-
|
| 523 |
-
if response.status_code == 200:
|
| 524 |
-
logging.debug(response_data)
|
| 525 |
-
if 'choices' in response_data and len(response_data['choices']) > 0:
|
| 526 |
-
summary = response_data['choices'][0]['message']['content'].strip()
|
| 527 |
-
logging.debug("groq: Chat request successful")
|
| 528 |
-
print("Groq: Chat request successful.")
|
| 529 |
-
return summary
|
| 530 |
-
else:
|
| 531 |
-
logging.error("Groq(chat): Expected data not found in API response.")
|
| 532 |
-
return "Groq(chat): Expected data not found in API response."
|
| 533 |
-
else:
|
| 534 |
-
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
|
| 535 |
-
return f"groq: API request failed: {response.text}"
|
| 536 |
-
|
| 537 |
-
except Exception as e:
|
| 538 |
-
logging.error("groq: Error in processing: %s", str(e))
|
| 539 |
-
return f"groq: Error occurred while processing summary with groq: {str(e)}"
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
def chat_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
| 543 |
-
import requests
|
| 544 |
-
import json
|
| 545 |
-
global openrouter_model, openrouter_api_key
|
| 546 |
-
try:
|
| 547 |
-
logging.debug("OpenRouter: Loading and validating configurations")
|
| 548 |
-
loaded_config_data = load_and_log_configs()
|
| 549 |
-
if loaded_config_data is None:
|
| 550 |
-
logging.error("Failed to load configuration data")
|
| 551 |
-
openrouter_api_key = None
|
| 552 |
-
else:
|
| 553 |
-
# Prioritize the API key passed as a parameter
|
| 554 |
-
if api_key and api_key.strip():
|
| 555 |
-
openrouter_api_key = api_key
|
| 556 |
-
logging.info("OpenRouter: Using API key provided as parameter")
|
| 557 |
-
else:
|
| 558 |
-
# If no parameter is provided, use the key from the config
|
| 559 |
-
openrouter_api_key = loaded_config_data['api_keys'].get('openrouter')
|
| 560 |
-
if openrouter_api_key:
|
| 561 |
-
logging.info("OpenRouter: Using API key from config file")
|
| 562 |
-
else:
|
| 563 |
-
logging.warning("OpenRouter: No API key found in config file")
|
| 564 |
-
|
| 565 |
-
# Model Selection validation
|
| 566 |
-
logging.debug("OpenRouter: Validating model selection")
|
| 567 |
-
loaded_config_data = load_and_log_configs()
|
| 568 |
-
openrouter_model = loaded_config_data['models']['openrouter']
|
| 569 |
-
logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}")
|
| 570 |
-
|
| 571 |
-
# Final check to ensure we have a valid API key
|
| 572 |
-
if not openrouter_api_key or not openrouter_api_key.strip():
|
| 573 |
-
logging.error("OpenRouter: No valid API key available")
|
| 574 |
-
raise ValueError("No valid Anthropic API key available")
|
| 575 |
-
except Exception as e:
|
| 576 |
-
logging.error("OpenRouter: Error in processing: %s", str(e))
|
| 577 |
-
return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}"
|
| 578 |
-
|
| 579 |
-
logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}")
|
| 580 |
-
|
| 581 |
-
logging.debug(f"OpenRouter: Using Model: {openrouter_model}")
|
| 582 |
-
|
| 583 |
-
if isinstance(input_data, str) and os.path.isfile(input_data):
|
| 584 |
-
logging.debug("OpenRouter: Loading json data for summarization")
|
| 585 |
-
with open(input_data, 'r') as file:
|
| 586 |
-
data = json.load(file)
|
| 587 |
-
else:
|
| 588 |
-
logging.debug("OpenRouter: Using provided string data for summarization")
|
| 589 |
-
data = input_data
|
| 590 |
-
|
| 591 |
-
# DEBUG - Debug logging to identify sent data
|
| 592 |
-
logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)")
|
| 593 |
-
logging.debug(f"OpenRouter: Type of data: {type(data)}")
|
| 594 |
-
|
| 595 |
-
if isinstance(data, dict) and 'summary' in data:
|
| 596 |
-
# If the loaded data is a dictionary and already contains a summary, return it
|
| 597 |
-
logging.debug("OpenRouter: Summary already exists in the loaded data")
|
| 598 |
-
return data['summary']
|
| 599 |
-
|
| 600 |
-
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
|
| 601 |
-
if isinstance(data, list):
|
| 602 |
-
segments = data
|
| 603 |
-
text = extract_text_from_segments(segments)
|
| 604 |
-
elif isinstance(data, str):
|
| 605 |
-
text = data
|
| 606 |
-
else:
|
| 607 |
-
raise ValueError("OpenRouter: Invalid input data format")
|
| 608 |
-
|
| 609 |
-
openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
|
| 610 |
-
logging.debug(f"openrouter: User Prompt being sent is {openrouter_prompt}")
|
| 611 |
-
|
| 612 |
-
if temp is None:
|
| 613 |
-
temp = 0.1
|
| 614 |
-
temp = float(temp)
|
| 615 |
-
if system_message is None:
|
| 616 |
-
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
| 617 |
-
|
| 618 |
-
try:
|
| 619 |
-
logging.debug("OpenRouter: Submitting request to API endpoint")
|
| 620 |
-
print("OpenRouter: Submitting request to API endpoint")
|
| 621 |
-
response = requests.post(
|
| 622 |
-
url="https://openrouter.ai/api/v1/chat/completions",
|
| 623 |
-
headers={
|
| 624 |
-
"Authorization": f"Bearer {openrouter_api_key}",
|
| 625 |
-
},
|
| 626 |
-
data=json.dumps({
|
| 627 |
-
"model": openrouter_model,
|
| 628 |
-
"messages": [
|
| 629 |
-
{"role": "system", "content": system_message},
|
| 630 |
-
{"role": "user", "content": openrouter_prompt}
|
| 631 |
-
],
|
| 632 |
-
"temperature": temp
|
| 633 |
-
})
|
| 634 |
-
)
|
| 635 |
-
|
| 636 |
-
response_data = response.json()
|
| 637 |
-
logging.debug("Full API Response Data: %s", response_data)
|
| 638 |
-
|
| 639 |
-
if response.status_code == 200:
|
| 640 |
-
if 'choices' in response_data and len(response_data['choices']) > 0:
|
| 641 |
-
summary = response_data['choices'][0]['message']['content'].strip()
|
| 642 |
-
logging.debug("openrouter: Chat request successful")
|
| 643 |
-
print("openrouter: Chat request successful.")
|
| 644 |
-
return summary
|
| 645 |
-
else:
|
| 646 |
-
logging.error("openrouter: Expected data not found in API response.")
|
| 647 |
-
return "openrouter: Expected data not found in API response."
|
| 648 |
-
else:
|
| 649 |
-
logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}")
|
| 650 |
-
return f"openrouter: API request failed: {response.text}"
|
| 651 |
-
except Exception as e:
|
| 652 |
-
logging.error("openrouter: Error in processing: %s", str(e))
|
| 653 |
-
return f"openrouter: Error occurred while processing chat request with openrouter: {str(e)}"
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
# FIXME: This function is not yet implemented properly
|
| 657 |
-
def chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None, temp=None):
|
| 658 |
-
loaded_config_data = load_and_log_configs()
|
| 659 |
-
logging.debug(f"huggingface Chat: Chat request process starting...")
|
| 660 |
-
try:
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
logging.debug(f"
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
"
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
logging
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
]
|
| 799 |
-
|
| 800 |
-
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
| 823 |
-
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
|
| 831 |
-
|
| 832 |
-
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
|
| 846 |
-
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
|
| 862 |
-
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
"
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
#
|
| 918 |
-
#
|
| 919 |
-
#
|
| 920 |
-
#
|
| 921 |
-
#
|
| 922 |
-
#
|
| 923 |
-
#
|
| 924 |
-
#
|
| 925 |
-
# logging.
|
| 926 |
-
#
|
| 927 |
-
#
|
| 928 |
-
#
|
| 929 |
-
# logging.
|
| 930 |
-
#
|
| 931 |
-
#
|
| 932 |
-
#
|
| 933 |
-
# )
|
| 934 |
-
#
|
| 935 |
-
# if isinstance(
|
| 936 |
-
#
|
| 937 |
-
#
|
| 938 |
-
#
|
| 939 |
-
#
|
| 940 |
-
#
|
| 941 |
-
#
|
| 942 |
-
#
|
| 943 |
-
#
|
| 944 |
-
#
|
| 945 |
-
#
|
| 946 |
-
#
|
| 947 |
-
#
|
| 948 |
-
#
|
| 949 |
-
#
|
| 950 |
-
#
|
| 951 |
-
#
|
| 952 |
-
#
|
| 953 |
-
#
|
| 954 |
-
#
|
| 955 |
-
#
|
| 956 |
-
#
|
| 957 |
-
#
|
| 958 |
-
#
|
| 959 |
-
#
|
| 960 |
-
#
|
| 961 |
-
|
| 962 |
-
|
| 963 |
-
|
| 964 |
-
#
|
| 965 |
-
#
|
| 966 |
-
# {"role": "system", "content": f"{system_prompt}"},
|
| 967 |
-
# {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
|
| 968 |
-
# ]
|
| 969 |
-
# )
|
| 970 |
-
# vllm_summary = completion.choices[0].message.content
|
| 971 |
-
# return vllm_summary
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
#
|
| 976 |
-
#
|
| 977 |
#######################################################################################################################
|
|
|
|
| 1 |
+
# Summarization_General_Lib.py
|
| 2 |
+
#########################################
|
| 3 |
+
# General Summarization Library
|
| 4 |
+
# This library is used to perform summarization.
|
| 5 |
+
#
|
| 6 |
+
####
|
| 7 |
+
####################
|
| 8 |
+
# Function List
|
| 9 |
+
#
|
| 10 |
+
# 1. extract_text_from_segments(segments: List[Dict]) -> str
|
| 11 |
+
# 2. chat_with_openai(api_key, file_path, custom_prompt_arg)
|
| 12 |
+
# 3. chat_with_anthropic(api_key, file_path, model, custom_prompt_arg, max_retries=3, retry_delay=5)
|
| 13 |
+
# 4. chat_with_cohere(api_key, file_path, model, custom_prompt_arg)
|
| 14 |
+
# 5. chat_with_groq(api_key, input_data, custom_prompt_arg, system_prompt=None):
|
| 15 |
+
# 6. chat_with_openrouter(api_key, input_data, custom_prompt_arg, system_prompt=None)
|
| 16 |
+
# 7. chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None)
|
| 17 |
+
# 8. chat_with_deepseek(api_key, input_data, custom_prompt_arg, system_prompt=None)
|
| 18 |
+
# 9. chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None)
|
| 19 |
+
#
|
| 20 |
+
#
|
| 21 |
+
####################
|
| 22 |
+
#
|
| 23 |
+
# Import necessary libraries
|
| 24 |
+
import json
|
| 25 |
+
import logging
|
| 26 |
+
import os
|
| 27 |
+
import time
|
| 28 |
+
from typing import List
|
| 29 |
+
|
| 30 |
+
import requests
|
| 31 |
+
#
|
| 32 |
+
# Import 3rd-Party Libraries
|
| 33 |
+
from requests import RequestException
|
| 34 |
+
#
|
| 35 |
+
# Import Local libraries
|
| 36 |
+
from App_Function_Libraries.Utils.Utils import load_and_log_configs
|
| 37 |
+
#
|
| 38 |
+
#######################################################################################################################
|
| 39 |
+
# Function Definitions
|
| 40 |
+
#
|
| 41 |
+
|
| 42 |
+
#FIXME: Update to include full arguments
|
| 43 |
+
|
| 44 |
+
def extract_text_from_segments(segments):
|
| 45 |
+
logging.debug(f"Segments received: {segments}")
|
| 46 |
+
logging.debug(f"Type of segments: {type(segments)}")
|
| 47 |
+
|
| 48 |
+
text = ""
|
| 49 |
+
|
| 50 |
+
if isinstance(segments, list):
|
| 51 |
+
for segment in segments:
|
| 52 |
+
logging.debug(f"Current segment: {segment}")
|
| 53 |
+
logging.debug(f"Type of segment: {type(segment)}")
|
| 54 |
+
if 'Text' in segment:
|
| 55 |
+
text += segment['Text'] + " "
|
| 56 |
+
else:
|
| 57 |
+
logging.warning(f"Skipping segment due to missing 'Text' key: {segment}")
|
| 58 |
+
else:
|
| 59 |
+
logging.warning(f"Unexpected type of 'segments': {type(segments)}")
|
| 60 |
+
|
| 61 |
+
return text.strip()
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def get_openai_embeddings(input_data: str, model: str) -> List[float]:
|
| 66 |
+
"""
|
| 67 |
+
Get embeddings for the input text from OpenAI API.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
input_data (str): The input text to get embeddings for.
|
| 71 |
+
model (str): The model to use for generating embeddings.
|
| 72 |
+
|
| 73 |
+
Returns:
|
| 74 |
+
List[float]: The embeddings generated by the API.
|
| 75 |
+
"""
|
| 76 |
+
loaded_config_data = load_and_log_configs()
|
| 77 |
+
api_key = loaded_config_data['api_keys']['openai']
|
| 78 |
+
|
| 79 |
+
if not api_key:
|
| 80 |
+
logging.error("OpenAI: API key not found or is empty")
|
| 81 |
+
raise ValueError("OpenAI: API Key Not Provided/Found in Config file or is empty")
|
| 82 |
+
|
| 83 |
+
logging.debug(f"OpenAI: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
| 84 |
+
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
|
| 85 |
+
logging.debug(f"OpenAI: Using model: {model}")
|
| 86 |
+
|
| 87 |
+
headers = {
|
| 88 |
+
'Authorization': f'Bearer {api_key}',
|
| 89 |
+
'Content-Type': 'application/json'
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
request_data = {
|
| 93 |
+
"input": input_data,
|
| 94 |
+
"model": model,
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
logging.debug("OpenAI: Posting request to embeddings API")
|
| 99 |
+
response = requests.post('https://api.openai.com/v1/embeddings', headers=headers, json=request_data)
|
| 100 |
+
logging.debug(f"Full API response data: {response}")
|
| 101 |
+
if response.status_code == 200:
|
| 102 |
+
response_data = response.json()
|
| 103 |
+
if 'data' in response_data and len(response_data['data']) > 0:
|
| 104 |
+
embedding = response_data['data'][0]['embedding']
|
| 105 |
+
logging.debug("OpenAI: Embeddings retrieved successfully")
|
| 106 |
+
return embedding
|
| 107 |
+
else:
|
| 108 |
+
logging.warning("OpenAI: Embedding data not found in the response")
|
| 109 |
+
raise ValueError("OpenAI: Embedding data not available in the response")
|
| 110 |
+
else:
|
| 111 |
+
logging.error(f"OpenAI: Embeddings request failed with status code {response.status_code}")
|
| 112 |
+
logging.error(f"OpenAI: Error response: {response.text}")
|
| 113 |
+
raise ValueError(f"OpenAI: Failed to retrieve embeddings. Status code: {response.status_code}")
|
| 114 |
+
except requests.RequestException as e:
|
| 115 |
+
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
|
| 116 |
+
raise ValueError(f"OpenAI: Error making API request: {str(e)}")
|
| 117 |
+
except Exception as e:
|
| 118 |
+
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
|
| 119 |
+
raise ValueError(f"OpenAI: Unexpected error occurred: {str(e)}")
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def chat_with_openai(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
| 123 |
+
loaded_config_data = load_and_log_configs()
|
| 124 |
+
openai_api_key = api_key
|
| 125 |
+
try:
|
| 126 |
+
# API key validation
|
| 127 |
+
if not openai_api_key:
|
| 128 |
+
logging.info("OpenAI: API key not provided as parameter")
|
| 129 |
+
logging.info("OpenAI: Attempting to use API key from config file")
|
| 130 |
+
openai_api_key = loaded_config_data['api_keys']['openai']
|
| 131 |
+
|
| 132 |
+
if not openai_api_key:
|
| 133 |
+
logging.error("OpenAI: API key not found or is empty")
|
| 134 |
+
return "OpenAI: API Key Not Provided/Found in Config file or is empty"
|
| 135 |
+
|
| 136 |
+
logging.debug(f"OpenAI: Using API Key: {openai_api_key[:5]}...{openai_api_key[-5:]}")
|
| 137 |
+
|
| 138 |
+
# Input data handling
|
| 139 |
+
logging.debug(f"OpenAI: Raw input data type: {type(input_data)}")
|
| 140 |
+
logging.debug(f"OpenAI: Raw input data (first 500 chars): {str(input_data)[:500]}...")
|
| 141 |
+
|
| 142 |
+
if isinstance(input_data, str):
|
| 143 |
+
if input_data.strip().startswith('{'):
|
| 144 |
+
# It's likely a JSON string
|
| 145 |
+
logging.debug("OpenAI: Parsing provided JSON string data for summarization")
|
| 146 |
+
try:
|
| 147 |
+
data = json.loads(input_data)
|
| 148 |
+
except json.JSONDecodeError as e:
|
| 149 |
+
logging.error(f"OpenAI: Error parsing JSON string: {str(e)}")
|
| 150 |
+
return f"OpenAI: Error parsing JSON input: {str(e)}"
|
| 151 |
+
elif os.path.isfile(input_data):
|
| 152 |
+
logging.debug("OpenAI: Loading JSON data from file for summarization")
|
| 153 |
+
with open(input_data, 'r') as file:
|
| 154 |
+
data = json.load(file)
|
| 155 |
+
else:
|
| 156 |
+
logging.debug("OpenAI: Using provided string data for summarization")
|
| 157 |
+
data = input_data
|
| 158 |
+
else:
|
| 159 |
+
data = input_data
|
| 160 |
+
|
| 161 |
+
logging.debug(f"OpenAI: Processed data type: {type(data)}")
|
| 162 |
+
logging.debug(f"OpenAI: Processed data (first 500 chars): {str(data)[:500]}...")
|
| 163 |
+
|
| 164 |
+
# Text extraction
|
| 165 |
+
if isinstance(data, dict):
|
| 166 |
+
if 'summary' in data:
|
| 167 |
+
logging.debug("OpenAI: Summary already exists in the loaded data")
|
| 168 |
+
return data['summary']
|
| 169 |
+
elif 'segments' in data:
|
| 170 |
+
text = extract_text_from_segments(data['segments'])
|
| 171 |
+
else:
|
| 172 |
+
text = json.dumps(data) # Convert dict to string if no specific format
|
| 173 |
+
elif isinstance(data, list):
|
| 174 |
+
text = extract_text_from_segments(data)
|
| 175 |
+
elif isinstance(data, str):
|
| 176 |
+
text = data
|
| 177 |
+
else:
|
| 178 |
+
raise ValueError(f"OpenAI: Invalid input data format: {type(data)}")
|
| 179 |
+
|
| 180 |
+
logging.debug(f"OpenAI: Extracted text (first 500 chars): {text[:500]}...")
|
| 181 |
+
logging.debug(f"OpenAI: Custom prompt: {custom_prompt_arg}")
|
| 182 |
+
|
| 183 |
+
openai_model = loaded_config_data['models']['openai'] or "gpt-4o"
|
| 184 |
+
logging.debug(f"OpenAI: Using model: {openai_model}")
|
| 185 |
+
|
| 186 |
+
headers = {
|
| 187 |
+
'Authorization': f'Bearer {openai_api_key}',
|
| 188 |
+
'Content-Type': 'application/json'
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
logging.debug(
|
| 192 |
+
f"OpenAI API Key: {openai_api_key[:5]}...{openai_api_key[-5:] if openai_api_key else None}")
|
| 193 |
+
logging.debug("openai: Preparing data + prompt for submittal")
|
| 194 |
+
openai_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
| 195 |
+
if temp is None:
|
| 196 |
+
temp = 0.7
|
| 197 |
+
if system_message is None:
|
| 198 |
+
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
| 199 |
+
temp = float(temp)
|
| 200 |
+
data = {
|
| 201 |
+
"model": openai_model,
|
| 202 |
+
"messages": [
|
| 203 |
+
{"role": "system", "content": system_message},
|
| 204 |
+
{"role": "user", "content": openai_prompt}
|
| 205 |
+
],
|
| 206 |
+
"max_tokens": 4096,
|
| 207 |
+
"temperature": temp
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
logging.debug("OpenAI: Posting request")
|
| 211 |
+
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
|
| 212 |
+
logging.debug(f"Full API response data: {response}")
|
| 213 |
+
if response.status_code == 200:
|
| 214 |
+
response_data = response.json()
|
| 215 |
+
logging.debug(response_data)
|
| 216 |
+
if 'choices' in response_data and len(response_data['choices']) > 0:
|
| 217 |
+
chat_response = response_data['choices'][0]['message']['content'].strip()
|
| 218 |
+
logging.debug("openai: Chat Sent successfully")
|
| 219 |
+
logging.debug(f"openai: Chat response: {chat_response}")
|
| 220 |
+
return chat_response
|
| 221 |
+
else:
|
| 222 |
+
logging.warning("openai: Chat response not found in the response data")
|
| 223 |
+
return "openai: Chat not available"
|
| 224 |
+
else:
|
| 225 |
+
logging.error(f"OpenAI: Chat request failed with status code {response.status_code}")
|
| 226 |
+
logging.error(f"OpenAI: Error response: {response.text}")
|
| 227 |
+
return f"OpenAI: Failed to process chat response. Status code: {response.status_code}"
|
| 228 |
+
except json.JSONDecodeError as e:
|
| 229 |
+
logging.error(f"OpenAI: Error decoding JSON: {str(e)}", exc_info=True)
|
| 230 |
+
return f"OpenAI: Error decoding JSON input: {str(e)}"
|
| 231 |
+
except requests.RequestException as e:
|
| 232 |
+
logging.error(f"OpenAI: Error making API request: {str(e)}", exc_info=True)
|
| 233 |
+
return f"OpenAI: Error making API request: {str(e)}"
|
| 234 |
+
except Exception as e:
|
| 235 |
+
logging.error(f"OpenAI: Unexpected error: {str(e)}", exc_info=True)
|
| 236 |
+
return f"OpenAI: Unexpected error occurred: {str(e)}"
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def chat_with_anthropic(api_key, input_data, model, custom_prompt_arg, max_retries=3, retry_delay=5, system_prompt=None):
|
| 240 |
+
try:
|
| 241 |
+
loaded_config_data = load_and_log_configs()
|
| 242 |
+
global anthropic_api_key
|
| 243 |
+
anthropic_api_key = api_key
|
| 244 |
+
# API key validation
|
| 245 |
+
if not api_key:
|
| 246 |
+
logging.info("Anthropic: API key not provided as parameter")
|
| 247 |
+
logging.info("Anthropic: Attempting to use API key from config file")
|
| 248 |
+
anthropic_api_key = loaded_config_data['api_keys']['anthropic']
|
| 249 |
+
|
| 250 |
+
if not api_key or api_key.strip() == "":
|
| 251 |
+
logging.error("Anthropic: API key not found or is empty")
|
| 252 |
+
return "Anthropic: API Key Not Provided/Found in Config file or is empty"
|
| 253 |
+
|
| 254 |
+
logging.debug(f"Anthropic: Using API Key: {api_key[:5]}...{api_key[-5:]}")
|
| 255 |
+
|
| 256 |
+
if system_prompt is not None:
|
| 257 |
+
logging.debug("Anthropic: Using provided system prompt")
|
| 258 |
+
pass
|
| 259 |
+
else:
|
| 260 |
+
system_prompt = "You are a helpful assistant"
|
| 261 |
+
|
| 262 |
+
logging.debug(f"AnthropicAI: Loaded data: {input_data}")
|
| 263 |
+
logging.debug(f"AnthropicAI: Type of data: {type(input_data)}")
|
| 264 |
+
|
| 265 |
+
anthropic_model = loaded_config_data['models']['anthropic']
|
| 266 |
+
|
| 267 |
+
headers = {
|
| 268 |
+
'x-api-key': anthropic_api_key,
|
| 269 |
+
'anthropic-version': '2023-06-01',
|
| 270 |
+
'Content-Type': 'application/json'
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
anthropic_user_prompt = custom_prompt_arg
|
| 274 |
+
logging.debug(f"Anthropic: User Prompt is {anthropic_user_prompt}")
|
| 275 |
+
user_message = {
|
| 276 |
+
"role": "user",
|
| 277 |
+
"content": f"{input_data} \n\n\n\n{anthropic_user_prompt}"
|
| 278 |
+
}
|
| 279 |
+
|
| 280 |
+
data = {
|
| 281 |
+
"model": model,
|
| 282 |
+
"max_tokens": 4096, # max _possible_ tokens to return
|
| 283 |
+
"messages": [user_message],
|
| 284 |
+
"stop_sequences": ["\n\nHuman:"],
|
| 285 |
+
"temperature": 0.1,
|
| 286 |
+
"top_k": 0,
|
| 287 |
+
"top_p": 1.0,
|
| 288 |
+
"metadata": {
|
| 289 |
+
"user_id": "example_user_id",
|
| 290 |
+
},
|
| 291 |
+
"stream": False,
|
| 292 |
+
"system": f"{system_prompt}"
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
for attempt in range(max_retries):
|
| 296 |
+
try:
|
| 297 |
+
logging.debug("anthropic: Posting request to API")
|
| 298 |
+
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data)
|
| 299 |
+
logging.debug(f"Full API response data: {response}")
|
| 300 |
+
# Check if the status code indicates success
|
| 301 |
+
if response.status_code == 200:
|
| 302 |
+
logging.debug("anthropic: Post submittal successful")
|
| 303 |
+
response_data = response.json()
|
| 304 |
+
try:
|
| 305 |
+
chat_response = response_data['content'][0]['text'].strip()
|
| 306 |
+
logging.debug("anthropic: Chat request successful")
|
| 307 |
+
print("Chat request processed successfully.")
|
| 308 |
+
return chat_response
|
| 309 |
+
except (IndexError, KeyError) as e:
|
| 310 |
+
logging.debug("anthropic: Unexpected data in response")
|
| 311 |
+
print("Unexpected response format from Anthropic API:", response.text)
|
| 312 |
+
return None
|
| 313 |
+
elif response.status_code == 500: # Handle internal server error specifically
|
| 314 |
+
logging.debug("anthropic: Internal server error")
|
| 315 |
+
print("Internal server error from API. Retrying may be necessary.")
|
| 316 |
+
time.sleep(retry_delay)
|
| 317 |
+
else:
|
| 318 |
+
logging.debug(
|
| 319 |
+
f"anthropic: Failed to process chat request, status code {response.status_code}: {response.text}")
|
| 320 |
+
print(f"Failed to process chat request, status code {response.status_code}: {response.text}")
|
| 321 |
+
return None
|
| 322 |
+
|
| 323 |
+
except RequestException as e:
|
| 324 |
+
logging.error(f"anthropic: Network error during attempt {attempt + 1}/{max_retries}: {str(e)}")
|
| 325 |
+
if attempt < max_retries - 1:
|
| 326 |
+
time.sleep(retry_delay)
|
| 327 |
+
else:
|
| 328 |
+
return f"anthropic: Network error: {str(e)}"
|
| 329 |
+
except Exception as e:
|
| 330 |
+
logging.error(f"anthropic: Error in processing: {str(e)}")
|
| 331 |
+
return f"anthropic: Error occurred while processing summary with Anthropic: {str(e)}"
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
# Summarize with Cohere
|
| 335 |
+
def chat_with_cohere(api_key, input_data, model, custom_prompt_arg, system_prompt=None):
|
| 336 |
+
loaded_config_data = load_and_log_configs()
|
| 337 |
+
if api_key is not None:
|
| 338 |
+
logging.debug(f"Cohere Chat: API Key from parameter: {api_key[:3]}...{api_key[-3:]}")
|
| 339 |
+
logging.debug(f"Cohere Chat: Cohere API Key from config: {loaded_config_data['api_keys']['cohere']}")
|
| 340 |
+
try:
|
| 341 |
+
# API key validation
|
| 342 |
+
if api_key is None:
|
| 343 |
+
logging.info("Cohere Chat: API key not provided as parameter")
|
| 344 |
+
logging.info("Cohere Chat: Attempting to use API key from config file")
|
| 345 |
+
cohere_api_key = loaded_config_data.get('api_keys', {}).get('cohere')
|
| 346 |
+
if not cohere_api_key:
|
| 347 |
+
logging.error("Cohere Chat: API key not found or is empty")
|
| 348 |
+
return "Cohere Chat: API Key Not Provided/Found in Config file or is empty"
|
| 349 |
+
|
| 350 |
+
logging.debug(f"Cohere Chat: Using API Key: {cohere_api_key[:3]}...{cohere_api_key[-3:]}")
|
| 351 |
+
|
| 352 |
+
logging.debug(f"Cohere Chat: Loaded data: {input_data}")
|
| 353 |
+
logging.debug(f"Cohere Chat: Type of data: {type(input_data)}")
|
| 354 |
+
|
| 355 |
+
# Ensure model is set
|
| 356 |
+
if not model:
|
| 357 |
+
model = loaded_config_data['models']['cohere']
|
| 358 |
+
logging.debug(f"Cohere Chat: Using model: {model}")
|
| 359 |
+
|
| 360 |
+
headers = {
|
| 361 |
+
'accept': 'application/json',
|
| 362 |
+
'content-type': 'application/json',
|
| 363 |
+
'Authorization': f'Bearer {cohere_api_key}'
|
| 364 |
+
}
|
| 365 |
+
|
| 366 |
+
# Ensure system_prompt is set
|
| 367 |
+
if not system_prompt:
|
| 368 |
+
system_prompt = "You are a helpful assistant"
|
| 369 |
+
logging.debug(f"Cohere Chat: System Prompt being sent is: '{system_prompt}'")
|
| 370 |
+
|
| 371 |
+
cohere_prompt = input_data
|
| 372 |
+
if custom_prompt_arg:
|
| 373 |
+
cohere_prompt += f"\n\n{custom_prompt_arg}"
|
| 374 |
+
logging.debug(f"Cohere Chat: User Prompt being sent is: '{cohere_prompt}'")
|
| 375 |
+
|
| 376 |
+
data = {
|
| 377 |
+
"chat_history": [
|
| 378 |
+
{"role": "SYSTEM", "message": system_prompt},
|
| 379 |
+
],
|
| 380 |
+
"message": cohere_prompt,
|
| 381 |
+
"model": model,
|
| 382 |
+
"connectors": [{"id": "web-search"}]
|
| 383 |
+
}
|
| 384 |
+
logging.debug(f"Cohere Chat: Request data: {json.dumps(data, indent=2)}")
|
| 385 |
+
|
| 386 |
+
logging.debug("cohere chat: Submitting request to API endpoint")
|
| 387 |
+
print("cohere chat: Submitting request to API endpoint")
|
| 388 |
+
|
| 389 |
+
try:
|
| 390 |
+
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data)
|
| 391 |
+
logging.debug(f"Cohere Chat: Raw API response: {response.text}")
|
| 392 |
+
except requests.RequestException as e:
|
| 393 |
+
logging.error(f"Cohere Chat: Error making API request: {str(e)}")
|
| 394 |
+
return f"Cohere Chat: Error making API request: {str(e)}"
|
| 395 |
+
|
| 396 |
+
if response.status_code == 200:
|
| 397 |
+
try:
|
| 398 |
+
response_data = response.json()
|
| 399 |
+
except json.JSONDecodeError:
|
| 400 |
+
logging.error("Cohere Chat: Failed to decode JSON response")
|
| 401 |
+
return "Cohere Chat: Failed to decode JSON response"
|
| 402 |
+
|
| 403 |
+
if response_data is None:
|
| 404 |
+
logging.error("Cohere Chat: No response data received.")
|
| 405 |
+
return "Cohere Chat: No response data received."
|
| 406 |
+
|
| 407 |
+
logging.debug(f"cohere chat: Full API response data: {json.dumps(response_data, indent=2)}")
|
| 408 |
+
|
| 409 |
+
if 'text' in response_data:
|
| 410 |
+
chat_response = response_data['text'].strip()
|
| 411 |
+
logging.debug("Cohere Chat: Chat request successful")
|
| 412 |
+
print("Cohere Chat request processed successfully.")
|
| 413 |
+
return chat_response
|
| 414 |
+
else:
|
| 415 |
+
logging.error("Cohere Chat: Expected 'text' key not found in API response.")
|
| 416 |
+
return "Cohere Chat: Expected data not found in API response."
|
| 417 |
+
else:
|
| 418 |
+
logging.error(f"Cohere Chat: API request failed with status code {response.status_code}: {response.text}")
|
| 419 |
+
print(f"Cohere Chat: Failed to process chat response, status code {response.status_code}: {response.text}")
|
| 420 |
+
return f"Cohere Chat: API request failed: {response.text}"
|
| 421 |
+
|
| 422 |
+
except Exception as e:
|
| 423 |
+
logging.error(f"Cohere Chat: Error in processing: {str(e)}", exc_info=True)
|
| 424 |
+
return f"Cohere Chat: Error occurred while processing chat request with Cohere: {str(e)}"
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
# https://console.groq.com/docs/quickstart
|
| 428 |
+
def chat_with_groq(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
| 429 |
+
logging.debug("Groq: Summarization process starting...")
|
| 430 |
+
try:
|
| 431 |
+
logging.debug("Groq: Loading and validating configurations")
|
| 432 |
+
loaded_config_data = load_and_log_configs()
|
| 433 |
+
if loaded_config_data is None:
|
| 434 |
+
logging.error("Failed to load configuration data")
|
| 435 |
+
groq_api_key = None
|
| 436 |
+
else:
|
| 437 |
+
# Prioritize the API key passed as a parameter
|
| 438 |
+
if api_key and api_key.strip():
|
| 439 |
+
groq_api_key = api_key
|
| 440 |
+
logging.info("Groq: Using API key provided as parameter")
|
| 441 |
+
else:
|
| 442 |
+
# If no parameter is provided, use the key from the config
|
| 443 |
+
groq_api_key = loaded_config_data['api_keys'].get('groq')
|
| 444 |
+
if groq_api_key:
|
| 445 |
+
logging.info("Groq: Using API key from config file")
|
| 446 |
+
else:
|
| 447 |
+
logging.warning("Groq: No API key found in config file")
|
| 448 |
+
|
| 449 |
+
# Final check to ensure we have a valid API key
|
| 450 |
+
if not groq_api_key or not groq_api_key.strip():
|
| 451 |
+
logging.error("Anthropic: No valid API key available")
|
| 452 |
+
# You might want to raise an exception here or handle this case as appropriate for your application
|
| 453 |
+
# For example: raise ValueError("No valid Anthropic API key available")
|
| 454 |
+
|
| 455 |
+
logging.debug(f"Groq: Using API Key: {groq_api_key[:5]}...{groq_api_key[-5:]}")
|
| 456 |
+
|
| 457 |
+
# Transcript data handling & Validation
|
| 458 |
+
if isinstance(input_data, str) and os.path.isfile(input_data):
|
| 459 |
+
logging.debug("Groq: Loading json data for summarization")
|
| 460 |
+
with open(input_data, 'r') as file:
|
| 461 |
+
data = json.load(file)
|
| 462 |
+
else:
|
| 463 |
+
logging.debug("Groq: Using provided string data for summarization")
|
| 464 |
+
data = input_data
|
| 465 |
+
|
| 466 |
+
# DEBUG - Debug logging to identify sent data
|
| 467 |
+
logging.debug(f"Groq: Loaded data: {data[:500]}...(snipped to first 500 chars)")
|
| 468 |
+
logging.debug(f"Groq: Type of data: {type(data)}")
|
| 469 |
+
|
| 470 |
+
if isinstance(data, dict) and 'summary' in data:
|
| 471 |
+
# If the loaded data is a dictionary and already contains a summary, return it
|
| 472 |
+
logging.debug("Groq: Summary already exists in the loaded data")
|
| 473 |
+
return data['summary']
|
| 474 |
+
|
| 475 |
+
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
|
| 476 |
+
if isinstance(data, list):
|
| 477 |
+
segments = data
|
| 478 |
+
text = extract_text_from_segments(segments)
|
| 479 |
+
elif isinstance(data, str):
|
| 480 |
+
text = data
|
| 481 |
+
else:
|
| 482 |
+
raise ValueError("Groq: Invalid input data format")
|
| 483 |
+
|
| 484 |
+
# Set the model to be used
|
| 485 |
+
groq_model = loaded_config_data['models']['groq']
|
| 486 |
+
|
| 487 |
+
if temp is None:
|
| 488 |
+
temp = 0.2
|
| 489 |
+
temp = float(temp)
|
| 490 |
+
if system_message is None:
|
| 491 |
+
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
| 492 |
+
|
| 493 |
+
headers = {
|
| 494 |
+
'Authorization': f'Bearer {groq_api_key}',
|
| 495 |
+
'Content-Type': 'application/json'
|
| 496 |
+
}
|
| 497 |
+
|
| 498 |
+
groq_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
| 499 |
+
logging.debug("groq: Prompt being sent is {groq_prompt}")
|
| 500 |
+
|
| 501 |
+
data = {
|
| 502 |
+
"messages": [
|
| 503 |
+
{
|
| 504 |
+
"role": "system",
|
| 505 |
+
"content": system_message,
|
| 506 |
+
},
|
| 507 |
+
{
|
| 508 |
+
"role": "user",
|
| 509 |
+
"content": groq_prompt,
|
| 510 |
+
}
|
| 511 |
+
],
|
| 512 |
+
"model": groq_model,
|
| 513 |
+
"temperature": temp
|
| 514 |
+
}
|
| 515 |
+
|
| 516 |
+
logging.debug("groq: Submitting request to API endpoint")
|
| 517 |
+
print("groq: Submitting request to API endpoint")
|
| 518 |
+
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data)
|
| 519 |
+
|
| 520 |
+
response_data = response.json()
|
| 521 |
+
logging.debug(f"Full API response data: {response_data}")
|
| 522 |
+
|
| 523 |
+
if response.status_code == 200:
|
| 524 |
+
logging.debug(response_data)
|
| 525 |
+
if 'choices' in response_data and len(response_data['choices']) > 0:
|
| 526 |
+
summary = response_data['choices'][0]['message']['content'].strip()
|
| 527 |
+
logging.debug("groq: Chat request successful")
|
| 528 |
+
print("Groq: Chat request successful.")
|
| 529 |
+
return summary
|
| 530 |
+
else:
|
| 531 |
+
logging.error("Groq(chat): Expected data not found in API response.")
|
| 532 |
+
return "Groq(chat): Expected data not found in API response."
|
| 533 |
+
else:
|
| 534 |
+
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}")
|
| 535 |
+
return f"groq: API request failed: {response.text}"
|
| 536 |
+
|
| 537 |
+
except Exception as e:
|
| 538 |
+
logging.error("groq: Error in processing: %s", str(e))
|
| 539 |
+
return f"groq: Error occurred while processing summary with groq: {str(e)}"
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
def chat_with_openrouter(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
| 543 |
+
import requests
|
| 544 |
+
import json
|
| 545 |
+
global openrouter_model, openrouter_api_key
|
| 546 |
+
try:
|
| 547 |
+
logging.debug("OpenRouter: Loading and validating configurations")
|
| 548 |
+
loaded_config_data = load_and_log_configs()
|
| 549 |
+
if loaded_config_data is None:
|
| 550 |
+
logging.error("Failed to load configuration data")
|
| 551 |
+
openrouter_api_key = None
|
| 552 |
+
else:
|
| 553 |
+
# Prioritize the API key passed as a parameter
|
| 554 |
+
if api_key and api_key.strip():
|
| 555 |
+
openrouter_api_key = api_key
|
| 556 |
+
logging.info("OpenRouter: Using API key provided as parameter")
|
| 557 |
+
else:
|
| 558 |
+
# If no parameter is provided, use the key from the config
|
| 559 |
+
openrouter_api_key = loaded_config_data['api_keys'].get('openrouter')
|
| 560 |
+
if openrouter_api_key:
|
| 561 |
+
logging.info("OpenRouter: Using API key from config file")
|
| 562 |
+
else:
|
| 563 |
+
logging.warning("OpenRouter: No API key found in config file")
|
| 564 |
+
|
| 565 |
+
# Model Selection validation
|
| 566 |
+
logging.debug("OpenRouter: Validating model selection")
|
| 567 |
+
loaded_config_data = load_and_log_configs()
|
| 568 |
+
openrouter_model = loaded_config_data['models']['openrouter']
|
| 569 |
+
logging.debug(f"OpenRouter: Using model from config file: {openrouter_model}")
|
| 570 |
+
|
| 571 |
+
# Final check to ensure we have a valid API key
|
| 572 |
+
if not openrouter_api_key or not openrouter_api_key.strip():
|
| 573 |
+
logging.error("OpenRouter: No valid API key available")
|
| 574 |
+
raise ValueError("No valid Anthropic API key available")
|
| 575 |
+
except Exception as e:
|
| 576 |
+
logging.error("OpenRouter: Error in processing: %s", str(e))
|
| 577 |
+
return f"OpenRouter: Error occurred while processing config file with OpenRouter: {str(e)}"
|
| 578 |
+
|
| 579 |
+
logging.debug(f"OpenRouter: Using API Key: {openrouter_api_key[:5]}...{openrouter_api_key[-5:]}")
|
| 580 |
+
|
| 581 |
+
logging.debug(f"OpenRouter: Using Model: {openrouter_model}")
|
| 582 |
+
|
| 583 |
+
if isinstance(input_data, str) and os.path.isfile(input_data):
|
| 584 |
+
logging.debug("OpenRouter: Loading json data for summarization")
|
| 585 |
+
with open(input_data, 'r') as file:
|
| 586 |
+
data = json.load(file)
|
| 587 |
+
else:
|
| 588 |
+
logging.debug("OpenRouter: Using provided string data for summarization")
|
| 589 |
+
data = input_data
|
| 590 |
+
|
| 591 |
+
# DEBUG - Debug logging to identify sent data
|
| 592 |
+
logging.debug(f"OpenRouter: Loaded data: {data[:500]}...(snipped to first 500 chars)")
|
| 593 |
+
logging.debug(f"OpenRouter: Type of data: {type(data)}")
|
| 594 |
+
|
| 595 |
+
if isinstance(data, dict) and 'summary' in data:
|
| 596 |
+
# If the loaded data is a dictionary and already contains a summary, return it
|
| 597 |
+
logging.debug("OpenRouter: Summary already exists in the loaded data")
|
| 598 |
+
return data['summary']
|
| 599 |
+
|
| 600 |
+
# If the loaded data is a list of segment dictionaries or a string, proceed with summarization
|
| 601 |
+
if isinstance(data, list):
|
| 602 |
+
segments = data
|
| 603 |
+
text = extract_text_from_segments(segments)
|
| 604 |
+
elif isinstance(data, str):
|
| 605 |
+
text = data
|
| 606 |
+
else:
|
| 607 |
+
raise ValueError("OpenRouter: Invalid input data format")
|
| 608 |
+
|
| 609 |
+
openrouter_prompt = f"{input_data} \n\n\n\n{custom_prompt_arg}"
|
| 610 |
+
logging.debug(f"openrouter: User Prompt being sent is {openrouter_prompt}")
|
| 611 |
+
|
| 612 |
+
if temp is None:
|
| 613 |
+
temp = 0.1
|
| 614 |
+
temp = float(temp)
|
| 615 |
+
if system_message is None:
|
| 616 |
+
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
| 617 |
+
|
| 618 |
+
try:
|
| 619 |
+
logging.debug("OpenRouter: Submitting request to API endpoint")
|
| 620 |
+
print("OpenRouter: Submitting request to API endpoint")
|
| 621 |
+
response = requests.post(
|
| 622 |
+
url="https://openrouter.ai/api/v1/chat/completions",
|
| 623 |
+
headers={
|
| 624 |
+
"Authorization": f"Bearer {openrouter_api_key}",
|
| 625 |
+
},
|
| 626 |
+
data=json.dumps({
|
| 627 |
+
"model": openrouter_model,
|
| 628 |
+
"messages": [
|
| 629 |
+
{"role": "system", "content": system_message},
|
| 630 |
+
{"role": "user", "content": openrouter_prompt}
|
| 631 |
+
],
|
| 632 |
+
"temperature": temp
|
| 633 |
+
})
|
| 634 |
+
)
|
| 635 |
+
|
| 636 |
+
response_data = response.json()
|
| 637 |
+
logging.debug("Full API Response Data: %s", response_data)
|
| 638 |
+
|
| 639 |
+
if response.status_code == 200:
|
| 640 |
+
if 'choices' in response_data and len(response_data['choices']) > 0:
|
| 641 |
+
summary = response_data['choices'][0]['message']['content'].strip()
|
| 642 |
+
logging.debug("openrouter: Chat request successful")
|
| 643 |
+
print("openrouter: Chat request successful.")
|
| 644 |
+
return summary
|
| 645 |
+
else:
|
| 646 |
+
logging.error("openrouter: Expected data not found in API response.")
|
| 647 |
+
return "openrouter: Expected data not found in API response."
|
| 648 |
+
else:
|
| 649 |
+
logging.error(f"openrouter: API request failed with status code {response.status_code}: {response.text}")
|
| 650 |
+
return f"openrouter: API request failed: {response.text}"
|
| 651 |
+
except Exception as e:
|
| 652 |
+
logging.error("openrouter: Error in processing: %s", str(e))
|
| 653 |
+
return f"openrouter: Error occurred while processing chat request with openrouter: {str(e)}"
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
# FIXME: This function is not yet implemented properly
|
| 657 |
+
def chat_with_huggingface(api_key, input_data, custom_prompt_arg, system_prompt=None, temp=None):
|
| 658 |
+
loaded_config_data = load_and_log_configs()
|
| 659 |
+
logging.debug(f"huggingface Chat: Chat request process starting...")
|
| 660 |
+
try:
|
| 661 |
+
huggingface_api_key = global_huggingface_api_key
|
| 662 |
+
|
| 663 |
+
headers = {
|
| 664 |
+
"Authorization": f"Bearer {huggingface_api_key}"
|
| 665 |
+
}
|
| 666 |
+
|
| 667 |
+
# Setup model
|
| 668 |
+
huggingface_model = loaded_config_data['models']['huggingface']
|
| 669 |
+
|
| 670 |
+
API_URL = f"https://api-inference.huggingface.co/models/{huggingface_model}/v1/chat/completions"
|
| 671 |
+
if temp is None:
|
| 672 |
+
temp = 1.0
|
| 673 |
+
temp = float(temp)
|
| 674 |
+
huggingface_prompt = f"{custom_prompt_arg}\n\n\n{input_data}"
|
| 675 |
+
logging.debug(f"HuggingFace chat: Prompt being sent is {huggingface_prompt}")
|
| 676 |
+
data = {
|
| 677 |
+
"model": f"{huggingface_model}",
|
| 678 |
+
"messages": [{"role": "user", "content": f"{huggingface_prompt}"}],
|
| 679 |
+
"max_tokens": 4096,
|
| 680 |
+
"stream": False,
|
| 681 |
+
"temperature": temp
|
| 682 |
+
}
|
| 683 |
+
|
| 684 |
+
logging.debug("HuggingFace Chat: Submitting request...")
|
| 685 |
+
response = requests.post(API_URL, headers=headers, json=data)
|
| 686 |
+
logging.debug(f"Full API response data: {response.text}")
|
| 687 |
+
|
| 688 |
+
if response.status_code == 200:
|
| 689 |
+
response_json = response.json()
|
| 690 |
+
if "choices" in response_json and len(response_json["choices"]) > 0:
|
| 691 |
+
generated_text = response_json["choices"][0]["message"]["content"]
|
| 692 |
+
logging.debug("HuggingFace Chat: Chat request successful")
|
| 693 |
+
print("HuggingFace Chat: Chat request successful.")
|
| 694 |
+
return generated_text.strip()
|
| 695 |
+
else:
|
| 696 |
+
logging.error("HuggingFace Chat: No generated text in the response")
|
| 697 |
+
return "HuggingFace Chat: No generated text in the response"
|
| 698 |
+
else:
|
| 699 |
+
logging.error(
|
| 700 |
+
f"HuggingFace Chat: Chat request failed with status code {response.status_code}: {response.text}")
|
| 701 |
+
return f"HuggingFace Chat: Failed to process chat request, status code {response.status_code}: {response.text}"
|
| 702 |
+
except Exception as e:
|
| 703 |
+
logging.error(f"HuggingFace Chat: Error in processing: {str(e)}")
|
| 704 |
+
print(f"HuggingFace Chat: Error occurred while processing chat request with huggingface: {str(e)}")
|
| 705 |
+
return None
|
| 706 |
+
|
| 707 |
+
|
| 708 |
+
def chat_with_deepseek(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
| 709 |
+
logging.debug("DeepSeek: Summarization process starting...")
|
| 710 |
+
try:
|
| 711 |
+
logging.debug("DeepSeek: Loading and validating configurations")
|
| 712 |
+
loaded_config_data = load_and_log_configs()
|
| 713 |
+
if loaded_config_data is None:
|
| 714 |
+
logging.error("Failed to load configuration data")
|
| 715 |
+
deepseek_api_key = None
|
| 716 |
+
else:
|
| 717 |
+
# Prioritize the API key passed as a parameter
|
| 718 |
+
if api_key and api_key.strip():
|
| 719 |
+
deepseek_api_key = api_key
|
| 720 |
+
logging.info("DeepSeek: Using API key provided as parameter")
|
| 721 |
+
else:
|
| 722 |
+
# If no parameter is provided, use the key from the config
|
| 723 |
+
deepseek_api_key = loaded_config_data['api_keys'].get('deepseek')
|
| 724 |
+
if deepseek_api_key:
|
| 725 |
+
logging.info("DeepSeek: Using API key from config file")
|
| 726 |
+
else:
|
| 727 |
+
logging.warning("DeepSeek: No API key found in config file")
|
| 728 |
+
|
| 729 |
+
# Final check to ensure we have a valid API key
|
| 730 |
+
if not deepseek_api_key or not deepseek_api_key.strip():
|
| 731 |
+
logging.error("DeepSeek: No valid API key available")
|
| 732 |
+
# You might want to raise an exception here or handle this case as appropriate for your application
|
| 733 |
+
# For example: raise ValueError("No valid deepseek API key available")
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
logging.debug(f"DeepSeek: Using API Key: {deepseek_api_key[:5]}...{deepseek_api_key[-5:]}")
|
| 737 |
+
|
| 738 |
+
# Input data handling
|
| 739 |
+
if isinstance(input_data, str) and os.path.isfile(input_data):
|
| 740 |
+
logging.debug("DeepSeek: Loading json data for summarization")
|
| 741 |
+
with open(input_data, 'r') as file:
|
| 742 |
+
data = json.load(file)
|
| 743 |
+
else:
|
| 744 |
+
logging.debug("DeepSeek: Using provided string data for summarization")
|
| 745 |
+
data = input_data
|
| 746 |
+
|
| 747 |
+
# DEBUG - Debug logging to identify sent data
|
| 748 |
+
logging.debug(f"DeepSeek: Loaded data: {data[:500]}...(snipped to first 500 chars)")
|
| 749 |
+
logging.debug(f"DeepSeek: Type of data: {type(data)}")
|
| 750 |
+
|
| 751 |
+
if isinstance(data, dict) and 'summary' in data:
|
| 752 |
+
# If the loaded data is a dictionary and already contains a summary, return it
|
| 753 |
+
logging.debug("DeepSeek: Summary already exists in the loaded data")
|
| 754 |
+
return data['summary']
|
| 755 |
+
|
| 756 |
+
# Text extraction
|
| 757 |
+
if isinstance(data, list):
|
| 758 |
+
segments = data
|
| 759 |
+
text = extract_text_from_segments(segments)
|
| 760 |
+
elif isinstance(data, str):
|
| 761 |
+
text = data
|
| 762 |
+
else:
|
| 763 |
+
raise ValueError("DeepSeek: Invalid input data format")
|
| 764 |
+
|
| 765 |
+
deepseek_model = loaded_config_data['models']['deepseek'] or "deepseek-chat"
|
| 766 |
+
|
| 767 |
+
if temp is None:
|
| 768 |
+
temp = 0.1
|
| 769 |
+
temp = float(temp)
|
| 770 |
+
if system_message is None:
|
| 771 |
+
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
| 772 |
+
|
| 773 |
+
headers = {
|
| 774 |
+
'Authorization': f'Bearer {api_key}',
|
| 775 |
+
'Content-Type': 'application/json'
|
| 776 |
+
}
|
| 777 |
+
|
| 778 |
+
logging.debug(
|
| 779 |
+
f"Deepseek API Key: {api_key[:5]}...{api_key[-5:] if api_key else None}")
|
| 780 |
+
logging.debug("DeepSeek: Preparing data + prompt for submittal")
|
| 781 |
+
deepseek_prompt = f"{text} \n\n\n\n{custom_prompt_arg}"
|
| 782 |
+
data = {
|
| 783 |
+
"model": deepseek_model,
|
| 784 |
+
"messages": [
|
| 785 |
+
{"role": "system", "content": system_message},
|
| 786 |
+
{"role": "user", "content": deepseek_prompt}
|
| 787 |
+
],
|
| 788 |
+
"stream": False,
|
| 789 |
+
"temperature": temp
|
| 790 |
+
}
|
| 791 |
+
|
| 792 |
+
logging.debug("DeepSeek: Posting request")
|
| 793 |
+
response = requests.post('https://api.deepseek.com/chat/completions', headers=headers, json=data)
|
| 794 |
+
logging.debug(f"Full API response data: {response}")
|
| 795 |
+
if response.status_code == 200:
|
| 796 |
+
response_data = response.json()
|
| 797 |
+
logging.debug(response_data)
|
| 798 |
+
if 'choices' in response_data and len(response_data['choices']) > 0:
|
| 799 |
+
summary = response_data['choices'][0]['message']['content'].strip()
|
| 800 |
+
logging.debug("DeepSeek: Chat request successful")
|
| 801 |
+
return summary
|
| 802 |
+
else:
|
| 803 |
+
logging.warning("DeepSeek: Chat response not found in the response data")
|
| 804 |
+
return "DeepSeek: Chat response not available"
|
| 805 |
+
else:
|
| 806 |
+
logging.error(f"DeepSeek: Chat request failed with status code {response.status_code}")
|
| 807 |
+
logging.error(f"DeepSeek: Error response: {response.text}")
|
| 808 |
+
return f"DeepSeek: Failed to chat request summary. Status code: {response.status_code}"
|
| 809 |
+
except Exception as e:
|
| 810 |
+
logging.error(f"DeepSeek: Error in processing: {str(e)}", exc_info=True)
|
| 811 |
+
return f"DeepSeek: Error occurred while processing chat request: {str(e)}"
|
| 812 |
+
|
| 813 |
+
|
| 814 |
+
def chat_with_mistral(api_key, input_data, custom_prompt_arg, temp=None, system_message=None):
|
| 815 |
+
logging.debug("Mistral: Chat request made")
|
| 816 |
+
try:
|
| 817 |
+
logging.debug("Mistral: Loading and validating configurations")
|
| 818 |
+
loaded_config_data = load_and_log_configs()
|
| 819 |
+
if loaded_config_data is None:
|
| 820 |
+
logging.error("Failed to load configuration data")
|
| 821 |
+
mistral_api_key = None
|
| 822 |
+
else:
|
| 823 |
+
# Prioritize the API key passed as a parameter
|
| 824 |
+
if api_key and api_key.strip():
|
| 825 |
+
mistral_api_key = api_key
|
| 826 |
+
logging.info("Mistral: Using API key provided as parameter")
|
| 827 |
+
else:
|
| 828 |
+
# If no parameter is provided, use the key from the config
|
| 829 |
+
mistral_api_key = loaded_config_data['api_keys'].get('mistral')
|
| 830 |
+
if mistral_api_key:
|
| 831 |
+
logging.info("Mistral: Using API key from config file")
|
| 832 |
+
else:
|
| 833 |
+
logging.warning("Mistral: No API key found in config file")
|
| 834 |
+
|
| 835 |
+
# Final check to ensure we have a valid API key
|
| 836 |
+
if not mistral_api_key or not mistral_api_key.strip():
|
| 837 |
+
logging.error("Mistral: No valid API key available")
|
| 838 |
+
return "Mistral: No valid API key available"
|
| 839 |
+
|
| 840 |
+
logging.debug(f"Mistral: Using API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:]}")
|
| 841 |
+
|
| 842 |
+
logging.debug("Mistral: Using provided string data")
|
| 843 |
+
data = input_data
|
| 844 |
+
|
| 845 |
+
# Text extraction
|
| 846 |
+
if isinstance(input_data, list):
|
| 847 |
+
text = extract_text_from_segments(input_data)
|
| 848 |
+
elif isinstance(input_data, str):
|
| 849 |
+
text = input_data
|
| 850 |
+
else:
|
| 851 |
+
raise ValueError("Mistral: Invalid input data format")
|
| 852 |
+
|
| 853 |
+
mistral_model = loaded_config_data['models'].get('mistral', "mistral-large-latest")
|
| 854 |
+
|
| 855 |
+
temp = float(temp) if temp is not None else 0.2
|
| 856 |
+
if system_message is None:
|
| 857 |
+
system_message = "You are a helpful AI assistant who does whatever the user requests."
|
| 858 |
+
|
| 859 |
+
headers = {
|
| 860 |
+
'Authorization': f'Bearer {mistral_api_key}',
|
| 861 |
+
'Content-Type': 'application/json'
|
| 862 |
+
}
|
| 863 |
+
|
| 864 |
+
logging.debug(
|
| 865 |
+
f"Deepseek API Key: {mistral_api_key[:5]}...{mistral_api_key[-5:] if mistral_api_key else None}")
|
| 866 |
+
logging.debug("Mistral: Preparing data + prompt for submittal")
|
| 867 |
+
mistral_prompt = f"{custom_prompt_arg}\n\n\n\n{text} "
|
| 868 |
+
data = {
|
| 869 |
+
"model": mistral_model,
|
| 870 |
+
"messages": [
|
| 871 |
+
{"role": "system",
|
| 872 |
+
"content": system_message},
|
| 873 |
+
{"role": "user",
|
| 874 |
+
"content": mistral_prompt}
|
| 875 |
+
],
|
| 876 |
+
"temperature": temp,
|
| 877 |
+
"top_p": 1,
|
| 878 |
+
"max_tokens": 4096,
|
| 879 |
+
"stream": False,
|
| 880 |
+
"safe_prompt": False
|
| 881 |
+
}
|
| 882 |
+
|
| 883 |
+
logging.debug("Mistral: Posting request")
|
| 884 |
+
response = requests.post('https://api.mistral.ai/v1/chat/completions', headers=headers, json=data)
|
| 885 |
+
logging.debug(f"Full API response data: {response}")
|
| 886 |
+
if response.status_code == 200:
|
| 887 |
+
response_data = response.json()
|
| 888 |
+
logging.debug(response_data)
|
| 889 |
+
if 'choices' in response_data and len(response_data['choices']) > 0:
|
| 890 |
+
summary = response_data['choices'][0]['message']['content'].strip()
|
| 891 |
+
logging.debug("Mistral: request successful")
|
| 892 |
+
return summary
|
| 893 |
+
else:
|
| 894 |
+
logging.warning("Mistral: Chat response not found in the response data")
|
| 895 |
+
return "Mistral: Chat response not available"
|
| 896 |
+
else:
|
| 897 |
+
logging.error(f"Mistral: Chat request failed with status code {response.status_code}")
|
| 898 |
+
logging.error(f"Mistral: Error response: {response.text}")
|
| 899 |
+
return f"Mistral: Failed to process summary. Status code: {response.status_code}. Error: {response.text}"
|
| 900 |
+
except Exception as e:
|
| 901 |
+
logging.error(f"Mistral: Error in processing: {str(e)}", exc_info=True)
|
| 902 |
+
return f"Mistral: Error occurred while processing Chat: {str(e)}"
|
| 903 |
+
|
| 904 |
+
|
| 905 |
+
|
| 906 |
+
# Stashed in here since OpenAI usage.... #FIXME
|
| 907 |
+
# FIXME - https://docs.vllm.ai/en/latest/getting_started/quickstart.html .... Great docs.
|
| 908 |
+
# def chat_with_vllm(input_data, custom_prompt_input, api_key=None, vllm_api_url="http://127.0.0.1:8000/v1/chat/completions", system_prompt=None):
|
| 909 |
+
# loaded_config_data = load_and_log_configs()
|
| 910 |
+
# llm_model = loaded_config_data['models']['vllm']
|
| 911 |
+
# # API key validation
|
| 912 |
+
# if api_key is None:
|
| 913 |
+
# logging.info("vLLM: API key not provided as parameter")
|
| 914 |
+
# logging.info("vLLM: Attempting to use API key from config file")
|
| 915 |
+
# api_key = loaded_config_data['api_keys']['llama']
|
| 916 |
+
#
|
| 917 |
+
# if api_key is None or api_key.strip() == "":
|
| 918 |
+
# logging.info("vLLM: API key not found or is empty")
|
| 919 |
+
# vllm_client = OpenAI(
|
| 920 |
+
# base_url=vllm_api_url,
|
| 921 |
+
# api_key=custom_prompt_input
|
| 922 |
+
# )
|
| 923 |
+
#
|
| 924 |
+
# if isinstance(input_data, str) and os.path.isfile(input_data):
|
| 925 |
+
# logging.debug("vLLM: Loading json data for summarization")
|
| 926 |
+
# with open(input_data, 'r') as file:
|
| 927 |
+
# data = json.load(file)
|
| 928 |
+
# else:
|
| 929 |
+
# logging.debug("vLLM: Using provided string data for summarization")
|
| 930 |
+
# data = input_data
|
| 931 |
+
#
|
| 932 |
+
# logging.debug(f"vLLM: Loaded data: {data}")
|
| 933 |
+
# logging.debug(f"vLLM: Type of data: {type(data)}")
|
| 934 |
+
#
|
| 935 |
+
# if isinstance(data, dict) and 'summary' in data:
|
| 936 |
+
# # If the loaded data is a dictionary and already contains a summary, return it
|
| 937 |
+
# logging.debug("vLLM: Summary already exists in the loaded data")
|
| 938 |
+
# return data['summary']
|
| 939 |
+
#
|
| 940 |
+
# # If the loaded data is a list of segment dictionaries or a string, proceed with summarization
|
| 941 |
+
# if isinstance(data, list):
|
| 942 |
+
# segments = data
|
| 943 |
+
# text = extract_text_from_segments(segments)
|
| 944 |
+
# elif isinstance(data, str):
|
| 945 |
+
# text = data
|
| 946 |
+
# else:
|
| 947 |
+
# raise ValueError("Invalid input data format")
|
| 948 |
+
#
|
| 949 |
+
#
|
| 950 |
+
# custom_prompt = custom_prompt_input
|
| 951 |
+
#
|
| 952 |
+
# completion = client.chat.completions.create(
|
| 953 |
+
# model=llm_model,
|
| 954 |
+
# messages=[
|
| 955 |
+
# {"role": "system", "content": f"{system_prompt}"},
|
| 956 |
+
# {"role": "user", "content": f"{text} \n\n\n\n{custom_prompt}"}
|
| 957 |
+
# ]
|
| 958 |
+
# )
|
| 959 |
+
# vllm_summary = completion.choices[0].message.content
|
| 960 |
+
# return vllm_summary
|
| 961 |
+
|
| 962 |
+
|
| 963 |
+
|
| 964 |
+
#
|
| 965 |
+
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 966 |
#######################################################################################################################
|