import gradio as gr from transformers import pipeline model_name = "bigscience/bloom-560m" nlp_model = pipeline("text-generation", model=model_name, tokenizer=model_name) def generate_text(input_text, max_length): generated_text = nlp_model(input_text, max_length=max_length) return f"
---
".join([sequence["generated_text"] for sequence in generated_text]) input_textbox = gr.inputs.Textbox(lines=5, placeholder="Enter your text here...") max_length_slider = gr.inputs.Slider(minimum=10, maximum=200, default=50, step=1, label="Max Length") output_html = gr.outputs.HTML() gr.Interface( fn=generate_text, inputs=[input_textbox, max_length_slider], outputs=output_html, title="Bloom-560m Text Generation", description="A demo for the bigscience/bloom-560m model.", disable_cache=True, ).launch()