Spaces:
Running
on
Zero
Running
on
Zero
Create nemo_align.py
Browse files- nemo_align.py +522 -0
nemo_align.py
ADDED
|
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from nemo.collections.asr.models import EncDecHybridRNNTCTCModel
|
| 2 |
+
from dataclasses import dataclass, field
|
| 3 |
+
from typing import List, Union
|
| 4 |
+
import torch
|
| 5 |
+
from nemo.utils import logging
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from viterbi_decoding import viterbi_decoding
|
| 8 |
+
|
| 9 |
+
BLANK_TOKEN = "<b>"
|
| 10 |
+
|
| 11 |
+
SPACE_TOKEN = "<space>"
|
| 12 |
+
|
| 13 |
+
V_NEGATIVE_NUM = -3.4e38
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@dataclass
|
| 17 |
+
class Token:
|
| 18 |
+
text: str = None
|
| 19 |
+
text_cased: str = None
|
| 20 |
+
s_start: int = None
|
| 21 |
+
s_end: int = None
|
| 22 |
+
t_start: float = None
|
| 23 |
+
t_end: float = None
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@dataclass
|
| 27 |
+
class Word:
|
| 28 |
+
text: str = None
|
| 29 |
+
s_start: int = None
|
| 30 |
+
s_end: int = None
|
| 31 |
+
t_start: float = None
|
| 32 |
+
t_end: float = None
|
| 33 |
+
tokens: List[Token] = field(default_factory=list)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@dataclass
|
| 37 |
+
class Segment:
|
| 38 |
+
text: str = None
|
| 39 |
+
s_start: int = None
|
| 40 |
+
s_end: int = None
|
| 41 |
+
t_start: float = None
|
| 42 |
+
t_end: float = None
|
| 43 |
+
words_and_tokens: List[Union[Word, Token]] = field(default_factory=list)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@dataclass
|
| 47 |
+
class Utterance:
|
| 48 |
+
token_ids_with_blanks: List[int] = field(default_factory=list)
|
| 49 |
+
segments_and_tokens: List[Union[Segment, Token]] = field(default_factory=list)
|
| 50 |
+
text: str = None
|
| 51 |
+
pred_text: str = None
|
| 52 |
+
audio_filepath: str = None
|
| 53 |
+
utt_id: str = None
|
| 54 |
+
saved_output_files: dict = field(default_factory=dict)
|
| 55 |
+
|
| 56 |
+
def is_sub_or_superscript_pair(ref_text, text):
|
| 57 |
+
"""returns True if ref_text is a subscript or superscript version of text"""
|
| 58 |
+
sub_or_superscript_to_num = {
|
| 59 |
+
"⁰": "0",
|
| 60 |
+
"¹": "1",
|
| 61 |
+
"²": "2",
|
| 62 |
+
"³": "3",
|
| 63 |
+
"⁴": "4",
|
| 64 |
+
"⁵": "5",
|
| 65 |
+
"⁶": "6",
|
| 66 |
+
"⁷": "7",
|
| 67 |
+
"⁸": "8",
|
| 68 |
+
"⁹": "9",
|
| 69 |
+
"₀": "0",
|
| 70 |
+
"₁": "1",
|
| 71 |
+
"₂": "2",
|
| 72 |
+
"₃": "3",
|
| 73 |
+
"₄": "4",
|
| 74 |
+
"₅": "5",
|
| 75 |
+
"₆": "6",
|
| 76 |
+
"₇": "7",
|
| 77 |
+
"₈": "8",
|
| 78 |
+
"₉": "9",
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
if text in sub_or_superscript_to_num:
|
| 82 |
+
if sub_or_superscript_to_num[text] == ref_text:
|
| 83 |
+
return True
|
| 84 |
+
return False
|
| 85 |
+
|
| 86 |
+
def restore_token_case(word, word_tokens):
|
| 87 |
+
|
| 88 |
+
# remove repeated "▁" and "_" from word as that is what the tokenizer will do
|
| 89 |
+
while "▁▁" in word:
|
| 90 |
+
word = word.replace("▁▁", "▁")
|
| 91 |
+
|
| 92 |
+
while "__" in word:
|
| 93 |
+
word = word.replace("__", "_")
|
| 94 |
+
|
| 95 |
+
word_tokens_cased = []
|
| 96 |
+
word_char_pointer = 0
|
| 97 |
+
|
| 98 |
+
for token in word_tokens:
|
| 99 |
+
token_cased = ""
|
| 100 |
+
|
| 101 |
+
for token_char in token:
|
| 102 |
+
if token_char == word[word_char_pointer]:
|
| 103 |
+
token_cased += token_char
|
| 104 |
+
word_char_pointer += 1
|
| 105 |
+
|
| 106 |
+
else:
|
| 107 |
+
if token_char.upper() == word[word_char_pointer] or is_sub_or_superscript_pair(
|
| 108 |
+
token_char, word[word_char_pointer]
|
| 109 |
+
):
|
| 110 |
+
token_cased += token_char.upper()
|
| 111 |
+
word_char_pointer += 1
|
| 112 |
+
else:
|
| 113 |
+
if token_char == "▁" or token_char == "_":
|
| 114 |
+
if word[word_char_pointer] == "▁" or word[word_char_pointer] == "_":
|
| 115 |
+
token_cased += token_char
|
| 116 |
+
word_char_pointer += 1
|
| 117 |
+
elif word_char_pointer == 0:
|
| 118 |
+
token_cased += token_char
|
| 119 |
+
|
| 120 |
+
else:
|
| 121 |
+
raise RuntimeError(
|
| 122 |
+
f"Unexpected error - failed to recover capitalization of tokens for word {word}"
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
word_tokens_cased.append(token_cased)
|
| 126 |
+
|
| 127 |
+
return word_tokens_cased
|
| 128 |
+
|
| 129 |
+
def get_utt_obj(
|
| 130 |
+
text, model, separator, T, audio_filepath, utt_id,
|
| 131 |
+
):
|
| 132 |
+
"""
|
| 133 |
+
Function to create an Utterance object and add all necessary information to it except
|
| 134 |
+
for timings of the segments / words / tokens according to the alignment - that will
|
| 135 |
+
be done later in a different function, after the alignment is done.
|
| 136 |
+
|
| 137 |
+
The Utterance object has a list segments_and_tokens which contains Segment objects and
|
| 138 |
+
Token objects (for blank tokens in between segments).
|
| 139 |
+
Within the Segment objects, there is a list words_and_tokens which contains Word objects and
|
| 140 |
+
Token objects (for blank tokens in between words).
|
| 141 |
+
Within the Word objects, there is a list tokens tokens which contains Token objects for
|
| 142 |
+
blank and non-blank tokens.
|
| 143 |
+
We will be building up these lists in this function. This data structure will then be useful for
|
| 144 |
+
generating the various output files that we wish to save.
|
| 145 |
+
"""
|
| 146 |
+
|
| 147 |
+
if not separator: # if separator is not defined - treat the whole text as one segment
|
| 148 |
+
segments = [text]
|
| 149 |
+
else:
|
| 150 |
+
segments = text.split(separator)
|
| 151 |
+
|
| 152 |
+
# remove any spaces at start and end of segments
|
| 153 |
+
segments = [seg.strip() for seg in segments]
|
| 154 |
+
# remove any empty segments
|
| 155 |
+
segments = [seg for seg in segments if len(seg) > 0]
|
| 156 |
+
|
| 157 |
+
utt = Utterance(text=text, audio_filepath=audio_filepath, utt_id=utt_id,)
|
| 158 |
+
|
| 159 |
+
# build up lists: token_ids_with_blanks, segments_and_tokens.
|
| 160 |
+
# The code for these is different depending on whether we use char-based tokens or not
|
| 161 |
+
if hasattr(model, 'tokenizer'):
|
| 162 |
+
if hasattr(model, 'blank_id'):
|
| 163 |
+
BLANK_ID = model.blank_id
|
| 164 |
+
else:
|
| 165 |
+
BLANK_ID = len(model.tokenizer.vocab) # TODO: check
|
| 166 |
+
|
| 167 |
+
utt.token_ids_with_blanks = [BLANK_ID]
|
| 168 |
+
|
| 169 |
+
# check for text being 0 length
|
| 170 |
+
if len(text) == 0:
|
| 171 |
+
return utt
|
| 172 |
+
|
| 173 |
+
# check for # tokens + token repetitions being > T
|
| 174 |
+
all_tokens = model.tokenizer.text_to_ids(text)
|
| 175 |
+
n_token_repetitions = 0
|
| 176 |
+
for i_tok in range(1, len(all_tokens)):
|
| 177 |
+
if all_tokens[i_tok] == all_tokens[i_tok - 1]:
|
| 178 |
+
n_token_repetitions += 1
|
| 179 |
+
|
| 180 |
+
if len(all_tokens) + n_token_repetitions > T:
|
| 181 |
+
logging.info(
|
| 182 |
+
f"Utterance {utt_id} has too many tokens compared to the audio file duration."
|
| 183 |
+
" Will not generate output alignment files for this utterance."
|
| 184 |
+
)
|
| 185 |
+
return utt
|
| 186 |
+
|
| 187 |
+
# build up data structures containing segments/words/tokens
|
| 188 |
+
utt.segments_and_tokens.append(Token(text=BLANK_TOKEN, text_cased=BLANK_TOKEN, s_start=0, s_end=0,))
|
| 189 |
+
|
| 190 |
+
segment_s_pointer = 1 # first segment will start at s=1 because s=0 is a blank
|
| 191 |
+
word_s_pointer = 1 # first word will start at s=1 because s=0 is a blank
|
| 192 |
+
|
| 193 |
+
for segment in segments:
|
| 194 |
+
# add the segment to segment_info and increment the segment_s_pointer
|
| 195 |
+
segment_tokens = model.tokenizer.text_to_tokens(segment)
|
| 196 |
+
utt.segments_and_tokens.append(
|
| 197 |
+
Segment(
|
| 198 |
+
text=segment,
|
| 199 |
+
s_start=segment_s_pointer,
|
| 200 |
+
# segment_tokens do not contain blanks => need to muliply by 2
|
| 201 |
+
# s_end needs to be the index of the final token (including blanks) of the current segment:
|
| 202 |
+
# segment_s_pointer + len(segment_tokens) * 2 is the index of the first token of the next segment =>
|
| 203 |
+
# => need to subtract 2
|
| 204 |
+
s_end=segment_s_pointer + len(segment_tokens) * 2 - 2,
|
| 205 |
+
)
|
| 206 |
+
)
|
| 207 |
+
segment_s_pointer += (
|
| 208 |
+
len(segment_tokens) * 2
|
| 209 |
+
) # multiply by 2 to account for blanks (which are not present in segment_tokens)
|
| 210 |
+
|
| 211 |
+
words = segment.split(" ") # we define words to be space-separated sub-strings
|
| 212 |
+
for word_i, word in enumerate(words):
|
| 213 |
+
|
| 214 |
+
word_tokens = model.tokenizer.text_to_tokens(word)
|
| 215 |
+
word_token_ids = model.tokenizer.text_to_ids(word)
|
| 216 |
+
word_tokens_cased = restore_token_case(word, word_tokens)
|
| 217 |
+
|
| 218 |
+
# add the word to word_info and increment the word_s_pointer
|
| 219 |
+
utt.segments_and_tokens[-1].words_and_tokens.append(
|
| 220 |
+
# word_tokens do not contain blanks => need to muliply by 2
|
| 221 |
+
# s_end needs to be the index of the final token (including blanks) of the current word:
|
| 222 |
+
# word_s_pointer + len(word_tokens) * 2 is the index of the first token of the next word =>
|
| 223 |
+
# => need to subtract 2
|
| 224 |
+
Word(text=word, s_start=word_s_pointer, s_end=word_s_pointer + len(word_tokens) * 2 - 2)
|
| 225 |
+
)
|
| 226 |
+
word_s_pointer += (
|
| 227 |
+
len(word_tokens) * 2
|
| 228 |
+
) # multiply by 2 to account for blanks (which are not present in word_tokens)
|
| 229 |
+
|
| 230 |
+
for token_i, (token, token_id, token_cased) in enumerate(
|
| 231 |
+
zip(word_tokens, word_token_ids, word_tokens_cased)
|
| 232 |
+
):
|
| 233 |
+
# add the text tokens and the blanks in between them
|
| 234 |
+
# to our token-based variables
|
| 235 |
+
utt.token_ids_with_blanks.extend([token_id, BLANK_ID])
|
| 236 |
+
# adding Token object for non-blank token
|
| 237 |
+
utt.segments_and_tokens[-1].words_and_tokens[-1].tokens.append(
|
| 238 |
+
Token(
|
| 239 |
+
text=token,
|
| 240 |
+
text_cased=token_cased,
|
| 241 |
+
# utt.token_ids_with_blanks has the form [...., <this non-blank token>, <blank>] =>
|
| 242 |
+
# => if do len(utt.token_ids_with_blanks) - 1 you get the index of the final <blank>
|
| 243 |
+
# => we want to do len(utt.token_ids_with_blanks) - 2 to get the index of <this non-blank token>
|
| 244 |
+
s_start=len(utt.token_ids_with_blanks) - 2,
|
| 245 |
+
# s_end is same as s_start since the token only occupies one element in the list
|
| 246 |
+
s_end=len(utt.token_ids_with_blanks) - 2,
|
| 247 |
+
)
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
# adding Token object for blank tokens in between the tokens of the word
|
| 251 |
+
# (ie do not add another blank if you have reached the end)
|
| 252 |
+
if token_i < len(word_tokens) - 1:
|
| 253 |
+
utt.segments_and_tokens[-1].words_and_tokens[-1].tokens.append(
|
| 254 |
+
Token(
|
| 255 |
+
text=BLANK_TOKEN,
|
| 256 |
+
text_cased=BLANK_TOKEN,
|
| 257 |
+
# utt.token_ids_with_blanks has the form [...., <this blank token>] =>
|
| 258 |
+
# => if do len(utt.token_ids_with_blanks) -1 you get the index of this <blank>
|
| 259 |
+
s_start=len(utt.token_ids_with_blanks) - 1,
|
| 260 |
+
# s_end is same as s_start since the token only occupies one element in the list
|
| 261 |
+
s_end=len(utt.token_ids_with_blanks) - 1,
|
| 262 |
+
)
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
# add a Token object for blanks in between words in this segment
|
| 266 |
+
# (but only *in between* - do not add the token if it is after the final word)
|
| 267 |
+
if word_i < len(words) - 1:
|
| 268 |
+
utt.segments_and_tokens[-1].words_and_tokens.append(
|
| 269 |
+
Token(
|
| 270 |
+
text=BLANK_TOKEN,
|
| 271 |
+
text_cased=BLANK_TOKEN,
|
| 272 |
+
# utt.token_ids_with_blanks has the form [...., <this blank token>] =>
|
| 273 |
+
# => if do len(utt.token_ids_with_blanks) -1 you get the index of this <blank>
|
| 274 |
+
s_start=len(utt.token_ids_with_blanks) - 1,
|
| 275 |
+
# s_end is same as s_start since the token only occupies one element in the list
|
| 276 |
+
s_end=len(utt.token_ids_with_blanks) - 1,
|
| 277 |
+
)
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
# add the blank token in between segments/after the final segment
|
| 281 |
+
utt.segments_and_tokens.append(
|
| 282 |
+
Token(
|
| 283 |
+
text=BLANK_TOKEN,
|
| 284 |
+
text_cased=BLANK_TOKEN,
|
| 285 |
+
# utt.token_ids_with_blanks has the form [...., <this blank token>] =>
|
| 286 |
+
# => if do len(utt.token_ids_with_blanks) -1 you get the index of this <blank>
|
| 287 |
+
s_start=len(utt.token_ids_with_blanks) - 1,
|
| 288 |
+
# s_end is same as s_start since the token only occupies one element in the list
|
| 289 |
+
s_end=len(utt.token_ids_with_blanks) - 1,
|
| 290 |
+
)
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
return utt
|
| 294 |
+
|
| 295 |
+
def _get_utt_id(audio_filepath, audio_filepath_parts_in_utt_id):
|
| 296 |
+
fp_parts = Path(audio_filepath).parts[-audio_filepath_parts_in_utt_id:]
|
| 297 |
+
utt_id = Path("_".join(fp_parts)).stem
|
| 298 |
+
utt_id = utt_id.replace(" ", "-") # replace any spaces in the filepath with dashes
|
| 299 |
+
return utt_id
|
| 300 |
+
|
| 301 |
+
def add_t_start_end_to_utt_obj(utt_obj, alignment_utt, output_timestep_duration):
|
| 302 |
+
"""
|
| 303 |
+
Function to add t_start and t_end (representing time in seconds) to the Utterance object utt_obj.
|
| 304 |
+
Args:
|
| 305 |
+
utt_obj: Utterance object to which we will add t_start and t_end for its
|
| 306 |
+
constituent segments/words/tokens.
|
| 307 |
+
alignment_utt: a list of ints indicating which token does the alignment pass through at each
|
| 308 |
+
timestep (will take the form [0, 0, 1, 1, ..., <num of tokens including blanks in uterance>]).
|
| 309 |
+
output_timestep_duration: a float indicating the duration of a single output timestep from
|
| 310 |
+
the ASR Model.
|
| 311 |
+
|
| 312 |
+
Returns:
|
| 313 |
+
utt_obj: updated Utterance object.
|
| 314 |
+
"""
|
| 315 |
+
|
| 316 |
+
# General idea for the algorithm of how we add t_start and t_end
|
| 317 |
+
# the timestep where a token s starts is the location of the first appearance of s_start in alignment_utt
|
| 318 |
+
# the timestep where a token s ends is the location of the final appearance of s_end in alignment_utt
|
| 319 |
+
# We will make dictionaries num_to_first_alignment_appearance and
|
| 320 |
+
# num_to_last_appearance and use that to update all of
|
| 321 |
+
# the t_start and t_end values in utt_obj.
|
| 322 |
+
# We will put t_start = t_end = -1 for tokens that are skipped (should only be blanks)
|
| 323 |
+
|
| 324 |
+
num_to_first_alignment_appearance = dict()
|
| 325 |
+
num_to_last_alignment_appearance = dict()
|
| 326 |
+
|
| 327 |
+
prev_s = -1 # use prev_s to keep track of when the s changes
|
| 328 |
+
for t, s in enumerate(alignment_utt):
|
| 329 |
+
if s > prev_s:
|
| 330 |
+
num_to_first_alignment_appearance[s] = t
|
| 331 |
+
|
| 332 |
+
if prev_s >= 0: # dont record prev_s = -1
|
| 333 |
+
num_to_last_alignment_appearance[prev_s] = t - 1
|
| 334 |
+
prev_s = s
|
| 335 |
+
# add last appearance of the final s
|
| 336 |
+
num_to_last_alignment_appearance[prev_s] = len(alignment_utt) - 1
|
| 337 |
+
|
| 338 |
+
# update all the t_start and t_end in utt_obj
|
| 339 |
+
for segment_or_token in utt_obj.segments_and_tokens:
|
| 340 |
+
if type(segment_or_token) is Segment:
|
| 341 |
+
segment = segment_or_token
|
| 342 |
+
segment.t_start = num_to_first_alignment_appearance[segment.s_start] * output_timestep_duration
|
| 343 |
+
segment.t_end = (num_to_last_alignment_appearance[segment.s_end] + 1) * output_timestep_duration
|
| 344 |
+
|
| 345 |
+
for word_or_token in segment.words_and_tokens:
|
| 346 |
+
if type(word_or_token) is Word:
|
| 347 |
+
word = word_or_token
|
| 348 |
+
word.t_start = num_to_first_alignment_appearance[word.s_start] * output_timestep_duration
|
| 349 |
+
word.t_end = (num_to_last_alignment_appearance[word.s_end] + 1) * output_timestep_duration
|
| 350 |
+
|
| 351 |
+
for token in word.tokens:
|
| 352 |
+
if token.s_start in num_to_first_alignment_appearance:
|
| 353 |
+
token.t_start = num_to_first_alignment_appearance[token.s_start] * output_timestep_duration
|
| 354 |
+
else:
|
| 355 |
+
token.t_start = -1
|
| 356 |
+
|
| 357 |
+
if token.s_end in num_to_last_alignment_appearance:
|
| 358 |
+
token.t_end = (
|
| 359 |
+
num_to_last_alignment_appearance[token.s_end] + 1
|
| 360 |
+
) * output_timestep_duration
|
| 361 |
+
else:
|
| 362 |
+
token.t_end = -1
|
| 363 |
+
else:
|
| 364 |
+
token = word_or_token
|
| 365 |
+
if token.s_start in num_to_first_alignment_appearance:
|
| 366 |
+
token.t_start = num_to_first_alignment_appearance[token.s_start] * output_timestep_duration
|
| 367 |
+
else:
|
| 368 |
+
token.t_start = -1
|
| 369 |
+
|
| 370 |
+
if token.s_end in num_to_last_alignment_appearance:
|
| 371 |
+
token.t_end = (num_to_last_alignment_appearance[token.s_end] + 1) * output_timestep_duration
|
| 372 |
+
else:
|
| 373 |
+
token.t_end = -1
|
| 374 |
+
|
| 375 |
+
else:
|
| 376 |
+
token = segment_or_token
|
| 377 |
+
if token.s_start in num_to_first_alignment_appearance:
|
| 378 |
+
token.t_start = num_to_first_alignment_appearance[token.s_start] * output_timestep_duration
|
| 379 |
+
else:
|
| 380 |
+
token.t_start = -1
|
| 381 |
+
|
| 382 |
+
if token.s_end in num_to_last_alignment_appearance:
|
| 383 |
+
token.t_end = (num_to_last_alignment_appearance[token.s_end] + 1) * output_timestep_duration
|
| 384 |
+
else:
|
| 385 |
+
token.t_end = -1
|
| 386 |
+
|
| 387 |
+
return utt_obj
|
| 388 |
+
|
| 389 |
+
def get_word_timings(
|
| 390 |
+
alignment_level, utt_obj,
|
| 391 |
+
):
|
| 392 |
+
boundary_info_utt = []
|
| 393 |
+
for segment_or_token in utt_obj.segments_and_tokens:
|
| 394 |
+
if type(segment_or_token) is Segment:
|
| 395 |
+
segment = segment_or_token
|
| 396 |
+
for word_or_token in segment.words_and_tokens:
|
| 397 |
+
if type(word_or_token) is Word:
|
| 398 |
+
word = word_or_token
|
| 399 |
+
if alignment_level == "words":
|
| 400 |
+
boundary_info_utt.append(word)
|
| 401 |
+
|
| 402 |
+
word_timestamps=[]
|
| 403 |
+
for boundary_info_ in boundary_info_utt: # loop over every token/word/segment
|
| 404 |
+
|
| 405 |
+
# skip if t_start = t_end = negative number because we used it as a marker to skip some blank tokens
|
| 406 |
+
if not (boundary_info_.t_start < 0 or boundary_info_.t_end < 0):
|
| 407 |
+
text = boundary_info_.text
|
| 408 |
+
start_time = boundary_info_.t_start
|
| 409 |
+
end_time = boundary_info_.t_end
|
| 410 |
+
|
| 411 |
+
text = text.replace(" ", SPACE_TOKEN)
|
| 412 |
+
word_timestamps.append((text, start_time, end_time))
|
| 413 |
+
|
| 414 |
+
return word_timestamps
|
| 415 |
+
|
| 416 |
+
def get_start_end_for_segments(word_timestamps):
|
| 417 |
+
segment_timestamps=[]
|
| 418 |
+
word_list = []
|
| 419 |
+
beginning = None
|
| 420 |
+
for word, start, end in word_timestamps:
|
| 421 |
+
if beginning is None:
|
| 422 |
+
beginning = start
|
| 423 |
+
word = word.capitalize()
|
| 424 |
+
word_list.append(word)
|
| 425 |
+
if word.endswith('.') or word.endswith('?') or word.endswith('!'):
|
| 426 |
+
segment = ' '.join(word_list)
|
| 427 |
+
segment_timestamps.append((segment, beginning, end))
|
| 428 |
+
beginning = None
|
| 429 |
+
word_list = []
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
segment = ' '.join(word_list)
|
| 433 |
+
segment_timestamps.append((segment, beginning, end))
|
| 434 |
+
|
| 435 |
+
return segment_timestamps
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
def align_tdt_to_ctc_timestamps(tdt_txt, model, audio_filepath):
|
| 439 |
+
if isinstance(model, EncDecHybridRNNTCTCModel):
|
| 440 |
+
model.change_decoding_strategy(decoder_type="ctc")
|
| 441 |
+
else:
|
| 442 |
+
raise ValueError("Currently supporting hybrid models")
|
| 443 |
+
|
| 444 |
+
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
|
| 445 |
+
with torch.inference_mode():
|
| 446 |
+
hypotheses = model.transcribe([audio_filepath], return_hypotheses=True, batch_size=1)
|
| 447 |
+
|
| 448 |
+
if type(hypotheses) == tuple and len(hypotheses) == 2:
|
| 449 |
+
hypotheses = hypotheses[0]
|
| 450 |
+
|
| 451 |
+
log_probs_list_batch = [hypotheses[0].y_sequence]
|
| 452 |
+
T_list_batch = [hypotheses[0].y_sequence.shape[0]]
|
| 453 |
+
ctc_pred_text = hypotheses[0].text if tdt_txt is not None else tdt_txt
|
| 454 |
+
|
| 455 |
+
utt_obj = get_utt_obj(
|
| 456 |
+
ctc_pred_text,
|
| 457 |
+
model,
|
| 458 |
+
None,
|
| 459 |
+
T_list_batch[0],
|
| 460 |
+
audio_filepath,
|
| 461 |
+
_get_utt_id(audio_filepath, 1),
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
utt_obj.pred_text = ctc_pred_text
|
| 465 |
+
|
| 466 |
+
y_list_batch = [utt_obj.token_ids_with_blanks]
|
| 467 |
+
U_list_batch = [len(utt_obj.token_ids_with_blanks)]
|
| 468 |
+
|
| 469 |
+
if hasattr(model, 'tokenizer'):
|
| 470 |
+
V = len(model.tokenizer.vocab) + 1
|
| 471 |
+
else:
|
| 472 |
+
V = len(model.decoder.vocabulary) + 1
|
| 473 |
+
|
| 474 |
+
# turn log_probs, y, T, U into dense tensors for fast computation during Viterbi decoding
|
| 475 |
+
T_max = max(T_list_batch)
|
| 476 |
+
U_max = max(U_list_batch)
|
| 477 |
+
# V = the number of tokens in the vocabulary + 1 for the blank token.
|
| 478 |
+
if hasattr(model, 'tokenizer'):
|
| 479 |
+
V = len(model.tokenizer.vocab) + 1
|
| 480 |
+
else:
|
| 481 |
+
V = len(model.decoder.vocabulary) + 1
|
| 482 |
+
T_batch = torch.tensor(T_list_batch)
|
| 483 |
+
U_batch = torch.tensor(U_list_batch)
|
| 484 |
+
|
| 485 |
+
# make log_probs_batch tensor of shape (B x T_max x V)
|
| 486 |
+
log_probs_batch = V_NEGATIVE_NUM * torch.ones((1, T_max, V))
|
| 487 |
+
for b, log_probs_utt in enumerate(log_probs_list_batch):
|
| 488 |
+
t = log_probs_utt.shape[0]
|
| 489 |
+
log_probs_batch[b, :t, :] = log_probs_utt
|
| 490 |
+
|
| 491 |
+
y_batch = V * torch.ones((1, U_max), dtype=torch.int64)
|
| 492 |
+
for b, y_utt in enumerate(y_list_batch):
|
| 493 |
+
U_utt = U_batch[b]
|
| 494 |
+
y_batch[b, :U_utt] = torch.tensor(y_utt)
|
| 495 |
+
|
| 496 |
+
model_downsample_factor = 8
|
| 497 |
+
output_timestep_duration = (
|
| 498 |
+
model.preprocessor.featurizer.hop_length * model_downsample_factor / model.cfg.preprocessor.sample_rate
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
alignments_batch = viterbi_decoding(log_probs_batch, y_batch, T_batch, U_batch, torch.device('cuda'))
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
utt_obj = add_t_start_end_to_utt_obj(utt_obj, alignments_batch[0], output_timestep_duration)
|
| 505 |
+
|
| 506 |
+
word_timestamps = get_word_timings("words", utt_obj=utt_obj)
|
| 507 |
+
|
| 508 |
+
segmet_timestamps = get_start_end_for_segments(word_timestamps)
|
| 509 |
+
|
| 510 |
+
return segmet_timestamps
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
# def main():
|
| 514 |
+
# # model = 'nvidia/parakeet-tdt_ctc-1.1b.nemo'
|
| 515 |
+
# # from nemo.collections.asr.models import ASRModel
|
| 516 |
+
# # asr_model = ASRModel.from_pretrained(model).to('cuda')
|
| 517 |
+
# # asr_model.eval()
|
| 518 |
+
# # Segments = align_tdt_to_ctc_timestamps(None, asr_model, 'processed_file.flac')
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
# if __name__ == '__main__':
|
| 522 |
+
# main()
|