Spaces:
Runtime error
Runtime error
import ast | |
import json | |
import logging | |
import math | |
import os | |
import random | |
import h5py | |
from dataclasses import dataclass | |
import braceexpand | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torch.nn.functional as F | |
import torchvision.datasets as datasets | |
import torchvision.transforms | |
import webdataset as wds | |
from PIL import Image | |
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler | |
from torch.utils.data.distributed import DistributedSampler | |
from functools import partial | |
from pathlib import Path | |
import wget | |
import tempfile | |
import copy | |
from contextlib import suppress | |
from clap_module.utils import get_tar_path_from_dataset_name, dataset_split | |
from clap_module.utils import load_p, load_class_label | |
from clap_module import tokenize as clip_tokenizer | |
from transformers import BertTokenizer | |
from transformers import RobertaTokenizer | |
from transformers import BartTokenizer | |
try: | |
import horovod.torch as hvd | |
except ImportError: | |
hvd = None | |
try: | |
import torchaudio | |
except ImportError: | |
torchaudio = None | |
bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
roberta_tokenizer = RobertaTokenizer.from_pretrained("roberta-base") | |
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-base") | |
def tokenizer(text, tmodel="roberta", max_length=77): | |
"""tokenizer for different models | |
tmodel is default to roberta as it is the best model for our task | |
max_length is default to 77 from the OpenAI CLIP parameters | |
We assume text to be a single string, but it can also be a list of strings | |
""" | |
if tmodel == "transformer": | |
return clip_tokenizer(text).squeeze(0) | |
elif tmodel == "bert": | |
result = bert_tokenizer( | |
text, | |
padding="max_length", | |
truncation=True, | |
max_length=max_length, | |
return_tensors="pt", | |
) | |
return {k: v.squeeze(0) for k, v in result.items()} | |
elif tmodel == "roberta": | |
result = roberta_tokenizer( | |
text, | |
padding="max_length", | |
truncation=True, | |
max_length=max_length, | |
return_tensors="pt", | |
) | |
return {k: v.squeeze(0) for k, v in result.items()} | |
elif tmodel == "bart": | |
result = bart_tokenizer( | |
text, | |
padding="max_length", | |
truncation=True, | |
max_length=max_length, | |
return_tensors="pt", | |
) | |
return {k: v.squeeze(0) for k, v in result.items()} | |
# initizlied the audioset map | |
_AUDIOSET_MAP_PATH = os.path.join(Path(__file__).parent, "audioset_textmap.npy") | |
_AUDIOSET_MAP = np.load(_AUDIOSET_MAP_PATH, allow_pickle=True) | |
def int16_to_float32(x): | |
return (x / 32767.0).astype(np.float32) | |
def float32_to_int16(x): | |
x = np.clip(x, a_min=-1., a_max=1.) | |
return (x * 32767.).astype(np.int16) | |
def int16_to_float32_torch(x): | |
return (x / 32767.0).type(torch.float32) | |
def float32_to_int16_torch(x): | |
x = torch.clamp(x, min=-1., max=1.) | |
return (x * 32767.).type(torch.int16) | |
# For Toy Dataset | |
class ToyDataset(Dataset): | |
def __init__(self, index_path, ipc, config, eval_mode=False): | |
"""Toy Dataset for testing the audioset input with text labels | |
Parameters | |
---------- | |
index_path: str | |
the link to the h5 file of each audio | |
idc: str | |
the link to the npy file, the number of samples in each class | |
config: dict | |
the audio cfg file | |
eval_model (bool): to indicate if the dataset is a testing dataset | |
""" | |
self.audio_cfg = config["audio_cfg"] | |
self.text_cfg = config["text_cfg"] | |
self.fp = h5py.File(index_path, "r") | |
self.ipc = np.load(ipc, allow_pickle=True) | |
self.total_size = len(self.fp["audio_name"]) | |
self.classes_num = self.audio_cfg["class_num"] | |
self.eval_mode = eval_mode | |
if not eval_mode: | |
self.generate_queue() | |
else: | |
self.queue = [] | |
for i in range(self.total_size): | |
target = self.fp["target"][i] | |
if np.sum(target) > 0: | |
self.queue.append(i) | |
self.total_size = len(self.queue) | |
logging.info("total dataset size: %d" % (self.total_size)) | |
logging.info("class num: %d" % (self.classes_num)) | |
def time_shifting(self, x): | |
frame_num = len(x) | |
shift_len = random.randint(0, frame_num - 1) | |
new_sample = np.concatenate([x[shift_len:], x[:shift_len]], axis=0) | |
return new_sample | |
def generate_queue(self): | |
self.queue = [] | |
while len(self.queue) < self.total_size: | |
class_set = [*range(self.classes_num)] | |
random.shuffle(class_set) | |
self.queue += [ | |
self.ipc[d][random.randint(0, len(self.ipc[d]) - 1)] for d in class_set | |
] | |
self.queue = self.queue[: self.total_size] | |
logging.info("queue regenerated:%s" % (self.queue[-5:])) | |
def crop_wav(self, x): | |
crop_size = self.audio_cfg["crop_size"] | |
crop_pos = random.randint(0, len(x) - crop_size - 1) | |
return x[crop_pos: crop_pos + crop_size] | |
def prompt_text(self, target): | |
events = _AUDIOSET_MAP[np.where(target > 0)] | |
event_text = "The sounds of " + ", ".join(events[:-1]) + " and " + events[-1] | |
text = tokenizer(event_text)[0] | |
return text | |
def __getitem__(self, index): | |
"""Load waveform, text, and target of an audio clip | |
Parameters | |
---------- | |
index: int | |
the index number | |
Return | |
------ | |
output: dict { | |
"hdf5_path": str, | |
"index_in_hdf5": int, | |
"audio_name": str, | |
"waveform": list (audio_length,), | |
"target": list (class_num, ), | |
"text": torch.tensor (context_length,) | |
} | |
the output dictionary | |
""" | |
s_index = self.queue[index] | |
audio_name = self.fp["audio_name"][s_index].decode() | |
# Hardcode here CHANGE | |
hdf5_path = ( | |
self.fp["hdf5_path"][s_index] | |
.decode() | |
.replace( | |
"../workspace", | |
"/home/la/kechen/Research/ke_zsasp/workspace", | |
) | |
) | |
r_idx = self.fp["index_in_hdf5"][s_index] | |
target = self.fp["target"][s_index].astype(np.float32) | |
text = self.prompt_text(target) | |
with h5py.File(hdf5_path, "r") as f: | |
waveform = int16_to_float32(f["waveform"][r_idx])[ | |
: self.audio_cfg["clip_samples"] | |
] | |
assert ( | |
len(waveform) == self.audio_cfg["clip_samples"] | |
), "The sample length is not match" | |
# Time shift | |
# if (self.config.enable_time_shift) and (not self.eval_mode): | |
# waveform = self.time_shifting(waveform) | |
# # Label Enhance | |
# if (self.config.crop_size is not None) and (not self.eval_mode): | |
# waveform = self.crop_wav(waveform) | |
# # the label enhance rate is fixed 0.5 | |
# if (self.config.enable_label_enhance) and (not self.eval_mode) and random.random() < 0.5: | |
# kidx = np.where(target)[0] | |
# for k in kidx: | |
# for add_key in self.class_map[k][1]: | |
# target[add_key] = 1.0 | |
# if len(self.class_map[k][2]) > 0: | |
# add_key = random.choice(self.class_map[k][2]) | |
# target[add_key] = 1.0 | |
# missing the text input | |
mel_spec = get_mel(torch.from_numpy(waveform), self.audio_cfg)[None, :, :] | |
mel_spec = torch.cat([mel_spec, mel_spec.clone(), mel_spec.clone(), mel_spec.clone()], dim=0).cpu().numpy() | |
longer = random.choice([True, False]) | |
if longer == False: | |
mel_spec[1:, :, :] = 0.0 | |
data_dict = { | |
"hdf5_path": hdf5_path, | |
"index_in_hdf5": r_idx, | |
"audio_name": audio_name, | |
"waveform": waveform, | |
"class_label": target, | |
"text": text, | |
"longer": longer, | |
"mel_fusion": mel_spec | |
} | |
return data_dict | |
def __len__(self): | |
return self.total_size | |
class DataInfo: | |
dataloader: DataLoader | |
sampler: DistributedSampler | |
def get_dataset_size(shards, sizefilepath_=None, is_local=True): | |
if isinstance(shards, list): | |
size_list = [] | |
for s in shards: | |
size_list.append( | |
get_dataset_size(s, sizefilepath_=sizefilepath_, is_local=is_local)[0] | |
) | |
else: | |
if not is_local: | |
for n in dataset_split.keys(): | |
if n in shards.split("/"): | |
break | |
for s in dataset_split[n]: | |
if s in shards.split("/"): | |
break | |
sizefilepath_ = f"./json_files/{n}/{s}/sizes.json" | |
shards_list = list(braceexpand.braceexpand(shards)) | |
dir_path = os.path.dirname(shards) | |
if sizefilepath_ is not None: | |
sizes = json.load(open(sizefilepath_, "r")) | |
total_size = sum( | |
[ | |
int(sizes[os.path.basename(shard.replace(".tar -", ".tar"))]) | |
for shard in shards_list | |
] | |
) | |
else: | |
sizes_filename = os.path.join(dir_path, "sizes.json") | |
len_filename = os.path.join(dir_path, "__len__") | |
if os.path.exists(sizes_filename): | |
sizes = json.load(open(sizes_filename, "r")) | |
total_size = sum( | |
[int(sizes[os.path.basename(shard)]) for shard in shards_list] | |
) | |
elif os.path.exists(len_filename): | |
# FIXME this used to be eval(open(...)) but that seemed rather unsafe | |
total_size = ast.literal_eval(open(len_filename, "r").read()) | |
else: | |
raise Exception( | |
f"Cannot find sizes file for dataset {shards}. Please specify the path to the file." | |
) | |
# total_size = None # num samples undefined | |
# some common dataset sizes (at time of authors last download) | |
# cc3m-train: 2905954 | |
# cc12m: 10968539 | |
# LAION-400m: 407332084 | |
num_shards = len(shards_list) | |
if isinstance(shards, list): | |
return sum(size_list), len(shards) | |
else: | |
return total_size, num_shards | |
def count_samples(dataloader): | |
os.environ["WDS_EPOCH"] = "0" | |
n_elements, n_batches = 0, 0 | |
for images, texts in dataloader: | |
n_batches += 1 | |
n_elements += len(images) | |
assert len(images) == len(texts) | |
return n_elements, n_batches | |
def log_and_continue(exn): | |
"""Call in an exception handler to ignore any exception, isssue a warning, and continue.""" | |
logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.") | |
return True | |
_SHARD_SHUFFLE_SIZE = 2000 | |
_SHARD_SHUFFLE_INITIAL = 500 | |
_SAMPLE_SHUFFLE_SIZE = 5000 | |
_SAMPLE_SHUFFLE_INITIAL = 1000 | |
def sample_prop(sizefile, inputs, proportion, is_local=True): | |
""" | |
Sample a proportion of the data. | |
""" | |
file_path_dict = { | |
os.path.split(inputs[i])[1]: os.path.split(inputs[i])[0] | |
for i in range(len(inputs)) | |
} | |
sampled_filepath_dict = {} | |
sampled_size_dict = {} | |
if not is_local: | |
if os.path.exists("sizes.json"): | |
os.remove("sizes.json") | |
wget.download(sizefile, "sizes.json") | |
sizefile = "sizes.json" | |
with open(sizefile, "r", encoding="UTF-8") as f: | |
load_dict = json.load(f) | |
L = int(len(file_path_dict) * proportion) | |
subkeys = random.sample(file_path_dict.keys(), L) | |
for k in subkeys: | |
sampled_size_dict[k] = load_dict[k] | |
sampled_filepath_dict[k] = file_path_dict[k] | |
return ( | |
sum(sampled_size_dict.values()), | |
L, | |
[os.path.join(v, k) for k, v in sampled_filepath_dict.items()], | |
sampled_size_dict, | |
) | |
def get_mel(audio_data, audio_cfg): | |
# mel shape: (n_mels, T) | |
mel_tf = torchaudio.transforms.MelSpectrogram( | |
sample_rate=audio_cfg['sample_rate'], | |
n_fft=audio_cfg['window_size'], | |
win_length=audio_cfg['window_size'], | |
hop_length=audio_cfg['hop_size'], | |
center=True, | |
pad_mode="reflect", | |
power=2.0, | |
norm=None, | |
onesided=True, | |
n_mels=audio_cfg['mel_bins'], | |
f_min=audio_cfg['fmin'], | |
f_max=audio_cfg['fmax'] | |
).to(audio_data.device) | |
mel = mel_tf(audio_data) | |
# Align to librosa: | |
# librosa_melspec = librosa.feature.melspectrogram( | |
# waveform, | |
# sr=audio_cfg['sample_rate'], | |
# n_fft=audio_cfg['window_size'], | |
# hop_length=audio_cfg['hop_size'], | |
# win_length=audio_cfg['window_size'], | |
# center=True, | |
# pad_mode="reflect", | |
# power=2.0, | |
# n_mels=audio_cfg['mel_bins'], | |
# norm=None, | |
# htk=True, | |
# f_min=audio_cfg['fmin'], | |
# f_max=audio_cfg['fmax'] | |
# ) | |
# we use log mel spectrogram as input | |
mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel) | |
return mel.T # (T, n_mels) | |
def get_audio_features(sample, audio_data, max_len, data_truncating, data_filling, audio_cfg, require_grad=False): | |
""" | |
Calculate and add audio features to sample. | |
Sample: a dict containing all the data of current sample. | |
audio_data: a tensor of shape (T) containing audio data. | |
max_len: the maximum length of audio data. | |
data_truncating: the method of truncating data. | |
data_filling: the method of filling data. | |
audio_cfg: a dict containing audio configuration. Comes from model_cfg['audio_cfg']. | |
require_grad: whether to require gradient for audio data. | |
This is useful when we want to apply gradient-based classifier-guidance. | |
""" | |
grad_fn = suppress if require_grad else torch.no_grad | |
with grad_fn(): | |
if len(audio_data) > max_len: | |
if data_truncating == "rand_trunc": | |
longer = torch.tensor([True]) | |
elif data_truncating == "fusion": | |
# fusion | |
mel = get_mel(audio_data, audio_cfg) | |
# split to three parts | |
chunk_frames = max_len // audio_cfg['hop_size'] + 1 # the +1 related to how the spectrogram is computed | |
total_frames = mel.shape[0] | |
if chunk_frames == total_frames: | |
# there is a corner case where the audio length is | |
# larger than max_len but smaller than max_len+hop_size. | |
# In this case, we just use the whole audio. | |
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0) | |
sample["mel_fusion"] = mel_fusion | |
longer = torch.tensor([False]) | |
else: | |
ranges = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3) | |
# print('total_frames-chunk_frames:', total_frames-chunk_frames, | |
# 'len(audio_data):', len(audio_data), | |
# 'chunk_frames:', chunk_frames, | |
# 'total_frames:', total_frames) | |
if len(ranges[1]) == 0: | |
# if the audio is too short, we just use the first chunk | |
ranges[1] = [0] | |
if len(ranges[2]) == 0: | |
# if the audio is too short, we just use the first chunk | |
ranges[2] = [0] | |
# randomly choose index for each part | |
idx_front = np.random.choice(ranges[0]) | |
idx_middle = np.random.choice(ranges[1]) | |
idx_back = np.random.choice(ranges[2]) | |
# select mel | |
mel_chunk_front = mel[idx_front:idx_front + chunk_frames, :] | |
mel_chunk_middle = mel[idx_middle:idx_middle + chunk_frames, :] | |
mel_chunk_back = mel[idx_back:idx_back + chunk_frames, :] | |
# shrink the mel | |
mel_shrink = torchvision.transforms.Resize(size=[chunk_frames, audio_cfg['mel_bins']])(mel[None])[0] | |
# logging.info(f"mel_shrink.shape: {mel_shrink.shape}") | |
# stack | |
mel_fusion = torch.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], dim=0) | |
sample["mel_fusion"] = mel_fusion | |
longer = torch.tensor([True]) | |
else: | |
raise NotImplementedError( | |
f"data_truncating {data_truncating} not implemented" | |
) | |
# random crop to max_len (for compatibility) | |
overflow = len(audio_data) - max_len | |
idx = np.random.randint(0, overflow + 1) | |
audio_data = audio_data[idx: idx + max_len] | |
else: # padding if too short | |
if len(audio_data) < max_len: # do nothing if equal | |
if data_filling == "repeatpad": | |
n_repeat = int(max_len / len(audio_data)) | |
audio_data = audio_data.repeat(n_repeat) | |
# audio_data = audio_data.unsqueeze(0).unsqueeze(0).unsqueeze(0) | |
# audio_data = F.interpolate(audio_data,size=max_len,mode="bicubic")[0,0,0] | |
audio_data = F.pad( | |
audio_data, | |
(0, max_len - len(audio_data)), | |
mode="constant", | |
value=0, | |
) | |
elif data_filling == "pad": | |
audio_data = F.pad( | |
audio_data, | |
(0, max_len - len(audio_data)), | |
mode="constant", | |
value=0, | |
) | |
elif data_filling == "repeat": | |
n_repeat = int(max_len / len(audio_data)) | |
audio_data = audio_data.repeat(n_repeat + 1)[:max_len] | |
else: | |
raise NotImplementedError( | |
f"data_filling {data_filling} not implemented" | |
) | |
if data_truncating == 'fusion': | |
mel = get_mel(audio_data, audio_cfg) | |
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0) | |
sample["mel_fusion"] = mel_fusion | |
longer = torch.tensor([False]) | |
sample["longer"] = longer | |
sample["waveform"] = audio_data | |
return sample | |
def select_text(json_dict_raw, text_augment_selection): | |
# For selecting augmented text from dataset | |
if text_augment_selection is None or text_augment_selection == "none": | |
texts = json_dict_raw["text"] | |
elif text_augment_selection == "all": | |
if "text_augment_all" in json_dict_raw.keys(): | |
texts = json_dict_raw["text_augment_all"] | |
else: | |
texts = json_dict_raw["text"] | |
elif text_augment_selection == "augment_only": | |
if "text_augment_all" in json_dict_raw.keys(): | |
if json_dict_raw["text_augment_t5"] is None: | |
texts = json_dict_raw["text"] | |
else: | |
texts = json_dict_raw["text_augment_t5"] | |
else: | |
texts = json_dict_raw["text"] | |
else: | |
raise NotImplementedError( | |
f"text_augment_selection {text_augment_selection} not implemented" | |
) | |
return texts | |
def preprocess_single( | |
sample, | |
audio_ext, | |
text_ext, | |
max_len, | |
audio_cfg, | |
tmodel, | |
class_index_dict, | |
data_filling, | |
data_truncating, | |
text_augment_selection, | |
): | |
""" | |
Preprocess a single sample for wdsdataloader. | |
""" | |
audio_data, orig_sr = sample[audio_ext] | |
audio_data = int16_to_float32_torch(float32_to_int16_torch(audio_data[0])) | |
sample = get_audio_features(sample, audio_data, max_len, data_truncating, data_filling, audio_cfg) | |
del sample[audio_ext] | |
json_dict_raw = sample[text_ext] | |
texts = select_text(json_dict_raw, text_augment_selection) | |
sample["full_text"] = texts | |
if isinstance(texts, list) and isinstance(texts[0], str) and len(texts) > 1: | |
texts = random.choice(texts) | |
sample["raw_text"] = texts | |
sample["text"] = tokenizer(texts, tmodel=tmodel) # text shape: [num_token] | |
if class_index_dict is not None: | |
# https://stackoverflow.com/questions/48004243/how-to-share-large-read-only-dictionary-list-across-processes-in-multiprocessing | |
# https://stackoverflow.com/questions/45693949/storing-strings-in-a-multiprocessing-sharedctypes-array | |
# in case the re-written version is wrong, here is the old version: | |
# sample["class_label"] = np.zeros(len(class_index_dict.keys())) | |
# for x in json_dict_raw["tag"]: | |
# sample["class_label"][class_index_dict[x]] = 1 | |
# sample["class_label"] = torch.tensor(sample["class_label"]).float() | |
class_labels = np.zeros(len(class_index_dict)) | |
class_labels[np.in1d(list(class_index_dict.keys()), json_dict_raw["tag"])] = 1 | |
sample["class_label"] = torch.tensor(class_labels).float() | |
del sample[text_ext] | |
sample["audio_name"] = sample["__key__"].split("/")[-1] + "." + audio_ext | |
sample["text_name"] = sample["__key__"].split("/")[-1] + "." + text_ext | |
sample["audio_orig_sr"] = orig_sr | |
return sample | |
def collate_fn_with_preprocess(batch, | |
audio_ext, | |
text_ext, | |
max_len, | |
audio_cfg, | |
args, | |
): | |
""" | |
Collate function for wdsdataloader. | |
batch: a list of dict, each dict is a sample | |
""" | |
class_index_dict = copy.deepcopy(args.class_index_dict) # To avoid deadlock in multiprocessing | |
data_filling = args.data_filling | |
data_truncating = args.data_truncating | |
text_augment_selection = args.text_augment_selection | |
tmodel = args.tmodel | |
# concatenate values in each dictionary. if it is a tensor, concatenate. if it is a list, extend. | |
data_preprocessed = [] | |
for sample in batch: | |
data_preprocessed.append( | |
preprocess_single(sample, audio_ext, text_ext, max_len, audio_cfg, tmodel, class_index_dict, data_filling, | |
data_truncating, text_augment_selection)) | |
batch_dict = {} | |
for k in data_preprocessed[0].keys(): | |
if isinstance(data_preprocessed[0][k], dict): # dealwith bert tokenizer output | |
batch_dict[k] = {} | |
for kk in data_preprocessed[0][k].keys(): | |
tmp = [] | |
for i in range(len(data_preprocessed)): | |
tmp.append(data_preprocessed[i][k][kk]) | |
batch_dict[k][kk] = torch.vstack(tmp) | |
elif isinstance(data_preprocessed[0][k], torch.Tensor): | |
batch_dict[k] = torch.stack([sample[k] for sample in data_preprocessed]) | |
elif isinstance(data_preprocessed[0][k], np.ndarray): | |
batch_dict[k] = torch.tensor(np.stack([sample[k] for sample in data_preprocessed])) | |
else: | |
batch_dict[k] = [sample[k] for sample in data_preprocessed] | |
del data_preprocessed | |
return batch_dict | |
def get_wds_dataset( | |
args, | |
model_cfg, | |
is_train, | |
audio_ext="flac", | |
text_ext="json", | |
max_len=480000, | |
proportion=1.0, | |
sizefilepath_=None, | |
is_local=None, | |
): | |
""" | |
Get a dataset for wdsdataloader. | |
""" | |
if is_local is None and (not args.remotedata is None): | |
is_local = not args.remotedata | |
input_shards = args.train_data if is_train else args.val_data | |
assert input_shards is not None | |
if not sizefilepath_ is None: | |
sizefilepath = sizefilepath_ | |
else: | |
sizefilepath = os.path.join(os.path.dirname(input_shards[0]), "sizes.json") | |
if proportion != 1.0: | |
num_samples, num_shards, input_shards, _ = sample_prop( | |
sizefilepath, input_shards, proportion, is_local=is_local | |
) | |
else: | |
num_samples, num_shards = get_dataset_size( | |
input_shards, sizefilepath_=sizefilepath_, is_local=is_local | |
) | |
if not num_samples: | |
if is_train: | |
num_samples = args.train_num_samples | |
if not num_samples: | |
raise RuntimeError( | |
"Currently, number of dataset samples must be specified for training dataset. " | |
"Please specify via `--train-num-samples` if no dataset length info present." | |
) | |
else: | |
num_samples = ( | |
args.val_num_samples or 0 | |
) # eval will just exhaust the iterator if not specified | |
pipeline = [wds.SimpleShardList(input_shards)] | |
# at this point we have an iterator over all the shards | |
# TODO: (yusong): add a if statement of distributed. If not, we don't need to split_by_node | |
if is_train or args.parallel_eval: | |
pipeline.extend( | |
[ | |
wds.detshuffle( | |
bufsize=_SHARD_SHUFFLE_SIZE, | |
initial=_SHARD_SHUFFLE_INITIAL, | |
seed=args.seed, | |
), | |
wds.split_by_node, | |
wds.split_by_worker, | |
# at this point, we have an iterator over the shards assigned to each worker at each node | |
wds.tarfile_to_samples(handler=log_and_continue), | |
wds.shuffle( | |
bufsize=_SAMPLE_SHUFFLE_SIZE, | |
initial=_SAMPLE_SHUFFLE_INITIAL, | |
rng=random.Random(args.seed), | |
), | |
# wds.repeatedly, # FIXME determine if this is beneficial | |
] | |
) | |
else: | |
pipeline.extend( | |
[ | |
wds.split_by_worker, | |
# at this point, we have an iterator over the shards assigned to each worker | |
wds.tarfile_to_samples(handler=log_and_continue), | |
] | |
) | |
pipeline.append( | |
wds.decode(wds.torch_audio), | |
) | |
pipeline.append( | |
wds.batched( | |
args.batch_size, | |
partial=not (is_train or args.parallel_eval), | |
collation_fn=partial(collate_fn_with_preprocess, | |
audio_ext=audio_ext, | |
text_ext=text_ext, | |
max_len=max_len, | |
audio_cfg=model_cfg['audio_cfg'], | |
args=args, | |
), | |
) | |
) | |
dataset = wds.DataPipeline(*pipeline) | |
if is_train or args.parallel_eval: | |
# (yusong): Currently parallel evaluation will be not precise as we are repeat the last few samples. | |
# (yusong): See comments below. | |
# roll over and repeat a few samples to get same number of full batches on each node | |
global_batch_size = args.batch_size * args.world_size | |
num_batches = math.ceil(num_samples / global_batch_size) | |
num_workers = max(1, args.workers) | |
num_worker_batches = math.ceil( | |
num_batches / num_workers | |
) # per dataloader worker | |
num_batches = num_worker_batches * num_workers | |
num_samples = num_batches * global_batch_size | |
dataset = dataset.with_epoch( | |
num_worker_batches | |
) # each worker is iterating over this | |
else: | |
# last batches are partial, eval is done on single (master) node | |
num_batches = math.ceil(num_samples / args.batch_size) | |
kwargs = {} | |
if args.horovod: # multi-node training on summit | |
kwargs["multiprocessing_context"] = "forkserver" | |
if is_train: | |
if args.prefetch_factor: | |
prefetch_factor = args.prefetch_factor | |
else: | |
prefetch_factor = max(2, args.batch_size // args.workers) | |
else: | |
prefetch_factor = 2 | |
dataloader = wds.WebLoader( | |
dataset, | |
batch_size=None, | |
shuffle=False, | |
num_workers=args.workers, | |
pin_memory=True, | |
prefetch_factor=prefetch_factor, | |
**kwargs | |
) | |
# FIXME not clear which approach is better, with_epoch before vs after dataloader? | |
# hoping to resolve via https://github.com/webdataset/webdataset/issues/169 | |
# if is_train: | |
# # roll over and repeat a few samples to get same number of full batches on each node | |
# global_batch_size = args.batch_size * args.world_size | |
# num_batches = math.ceil(num_samples / global_batch_size) | |
# num_workers = max(1, args.workers) | |
# num_batches = math.ceil(num_batches / num_workers) * num_workers | |
# num_samples = num_batches * global_batch_size | |
# dataloader = dataloader.with_epoch(num_batches) | |
# else: | |
# # last batches are partial, eval is done on single (master) node | |
# num_batches = math.ceil(num_samples / args.batch_size) | |
# add meta-data to dataloader instance for convenience | |
dataloader.num_batches = num_batches | |
dataloader.num_samples = num_samples | |
return DataInfo(dataloader, None) | |
def wds_batch_list2dict( | |
batch, | |
keys=[ | |
"__url__", | |
"__key__", | |
"waveform", | |
"text", | |
"raw_text", | |
"audio_name", | |
"text_name", | |
"audio_orig_sr", | |
], | |
): | |
""" | |
Return a dictionary of the batch, with keys as the names of the fields. | |
""" | |
assert len(keys) == len( | |
batch | |
), "batch must have same number of keys as keys argument" | |
return {keys[i]: batch[i] for i in range(len(batch))} | |
def get_toy_dataset(args, model_cfg, is_train): | |
index_path = args.train_data if is_train else args.val_data | |
ipc_path = args.train_ipc if is_train else args.val_ipc | |
assert index_path and ipc_path | |
eval_mode = not is_train | |
dataset = ToyDataset(index_path, ipc_path, model_cfg, eval_mode=eval_mode) | |
num_samples = len(dataset) | |
sampler = ( | |
DistributedSampler(dataset, shuffle=False) | |
if args.distributed and is_train | |
else None | |
) | |
dataloader = DataLoader( | |
dataset, | |
batch_size=args.batch_size, | |
shuffle=False, | |
num_workers=args.workers, | |
sampler=sampler, | |
drop_last=is_train, | |
) | |
dataloader.num_samples = num_samples | |
dataloader.num_batches = len(dataloader) | |
return DataInfo(dataloader, sampler) | |
def get_dataset_fn(dataset_type): | |
if dataset_type == "webdataset": | |
return get_wds_dataset | |
elif dataset_type == "toy": | |
return get_toy_dataset | |
else: | |
raise ValueError(f"Unsupported dataset type: {dataset_type}") | |
def get_data(args, model_cfg): | |
data = {} | |
args.class_index_dict = load_class_label(args.class_label_path) | |
if args.datasetinfos is None: | |
args.datasetinfos = ["train", "unbalanced_train", "balanced_train"] | |
if args.dataset_type == "webdataset": | |
args.train_data = get_tar_path_from_dataset_name( | |
args.datasetnames, | |
args.datasetinfos, | |
islocal=not args.remotedata, | |
proportion=args.dataset_proportion, | |
dataset_path=args.datasetpath, | |
full_dataset=args.full_train_dataset, | |
) | |
if args.full_train_dataset is None: | |
args.full_train_dataset = [] | |
if args.exclude_eval_dataset is None: | |
args.exclude_eval_dataset = [] | |
excluded_eval_datasets = args.full_train_dataset + args.exclude_eval_dataset | |
val_dataset_names = [n for n in args.datasetnames if n not in excluded_eval_datasets] \ | |
if excluded_eval_datasets else args.datasetnames | |
args.val_dataset_names = val_dataset_names | |
args.val_data = get_tar_path_from_dataset_name( | |
val_dataset_names, | |
["valid", "test", "eval"], | |
islocal=not args.remotedata, | |
proportion=1, | |
dataset_path=args.datasetpath, | |
full_dataset=None, | |
) | |
if args.train_data: | |
data["train"] = get_dataset_fn(args.dataset_type)( | |
args, model_cfg, is_train=True | |
) | |
if args.val_data: | |
data["val"] = get_dataset_fn(args.dataset_type)( | |
args, model_cfg, is_train=False | |
) | |
return data | |