File size: 15,562 Bytes
a344f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
"""
Based on: https://github.com/lucidrains/flamingo-pytorch
"""

from einops import rearrange, repeat
from einops_exts import rearrange_many

import numpy as np
from functools import reduce, partial

import torch
from torch import einsum, nn
import torch.nn.functional as F
from torch.cuda.amp import autocast


def exists(val):
    return val is not None

def FeedForward(dim, mult=4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias=False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias=False),
    )

# Transformer (encoder) https://github.com/jadore801120/attention-is-all-you-need-pytorch
# Original Copyright 2017 Victor Huang
#  MIT License (https://opensource.org/licenses/MIT)

class ScaledDotProductAttention(nn.Module):
    ''' Scaled Dot-Product Attention '''

    def __init__(self, temperature, attn_dropout=0.1):
        super().__init__()
        self.temperature = temperature
        self.dropout = nn.Dropout(attn_dropout)

    def forward(self, q, k, v, mask=None):

        attn = torch.matmul(q / self.temperature, k.transpose(2, 3))

        if mask is not None:
            attn = attn.masked_fill(mask == 0, -1e9)

        attn = self.dropout(F.softmax(attn, dim=-1))
        output = torch.matmul(attn, v)

        return output, attn


class MultiHeadAttention(nn.Module):
    ''' Multi-Head Attention module '''

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
        self.fc = nn.Linear(n_head * d_v, d_model, bias=False)

        self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)

        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)


    def forward(self, q, k, v, mask=None, rotary_frequencies=None):

        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)

        residual = q

        # Pass through the pre-attention projection: b x lq x (n*dv)
        # Separate different heads: b x lq x n x dv
        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # Apply rotary positional embeddings
        q = apply_rotary_pos_emb(q, rotary_frequencies)
        k = apply_rotary_pos_emb(k, rotary_frequencies)

        # Transpose for attention dot product: b x n x lq x dv
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

        if mask is not None:
            mask = mask.unsqueeze(1).unsqueeze(2)   # For head axis broadcasting.

        q, attn = self.attention(q, k, v, mask=mask)

        # Transpose to move the head dimension back: b x lq x n x dv
        # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
        q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
        q = self.dropout(self.fc(q))
        q += residual

        q = self.layer_norm(q)

        return q, attn


class PositionwiseFeedForward(nn.Module):
    ''' A two-feed-forward-layer module '''

    def __init__(self, d_in, d_hid, dropout=0.1):
        super().__init__()
        self.w_1 = nn.Linear(d_in, d_hid) # position-wise
        self.w_2 = nn.Linear(d_hid, d_in) # position-wise
        self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):

        residual = x

        x = self.w_2(F.relu(self.w_1(x)))
        x = self.dropout(x)
        x += residual

        x = self.layer_norm(x)

        return x

class RotaryEmbedding(nn.Module):
    def __init__(
        self,
        dim,
        use_xpos = False,
        scale_base = 512,
        interpolation_factor = 1.,
        base = 4096,
        base_rescale_factor = 1.
    ):
        super().__init__()
        # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
        # has some connection to NTK literature
        # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
        base *= base_rescale_factor ** (dim / (dim - 2))

        inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', inv_freq)

        assert interpolation_factor >= 1.
        self.interpolation_factor = interpolation_factor

        if not use_xpos:
            self.register_buffer('scale', None)
            return

        scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)

        self.scale_base = scale_base
        self.register_buffer('scale', scale)

    def forward_from_seq_len(self, seq_len):
        device = self.inv_freq.device

        t = torch.arange(seq_len, device = device)
        return self.forward(t)

    @autocast(enabled = False)
    def forward(self, t):
        device = self.inv_freq.device

        t = t.to(torch.float32)

        t = t / self.interpolation_factor

        freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
        freqs = torch.cat((freqs, freqs), dim = -1)

        if self.scale is None:
            return freqs, 1.
        
        power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
        scale = self.scale ** rearrange(power, 'n -> n 1')
        scale = torch.cat((scale, scale), dim = -1)

        return freqs, scale

def rotate_half(x):
    x = rearrange(x, '... (j d) -> ... j d', j = 2)
    x1, x2 = x.unbind(dim = -2)
    return torch.cat((-x2, x1), dim = -1)

@autocast(enabled = False)
def apply_rotary_pos_emb(t, freqs, scale = 1):
    out_dtype = t.dtype

    # cast to float32 if necessary for numerical stability
    dtype = reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
    rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
    freqs, t = freqs.to(dtype), t.to(dtype)
    freqs = freqs[-seq_len:, :]

    if t.ndim == 4 and freqs.ndim == 3:
        freqs = rearrange(freqs, 'b n d -> b 1 n d')

    # partial rotary embeddings, Wang et al. GPT-J
    t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
    t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)

    t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)

    return torch.cat((t, t_unrotated), dim = -1)

class PositionalEncoding(nn.Module):

    def __init__(self, d_hid, n_position=200):
        super(PositionalEncoding, self).__init__()
        self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))

    def _get_sinusoid_encoding_table(self, n_position, d_hid):

        def get_position_angle_vec(position):
            return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]

        sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

        return torch.FloatTensor(sinusoid_table).unsqueeze(0)

    def forward(self, x):
        return x + self.pos_table[:, :x.size(1)].clone().detach()


class EncoderLayer(nn.Module):
    ''' Compose with two layers '''

    def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.0):
        super(EncoderLayer, self).__init__()
        self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)

    def forward(self, enc_input, slf_attn_mask=None, rotary_frequencies=None):
        enc_output, enc_slf_attn = self.slf_attn(
            enc_input, enc_input, enc_input, mask=slf_attn_mask, rotary_frequencies=rotary_frequencies)
        enc_output = self.pos_ffn(enc_output)
        return enc_output, enc_slf_attn


class TransformerEncoder(nn.Module):
    ''' A encoder model with self attention mechanism. '''

    def __init__(
            self, d_word_vec=512, n_layers=6, n_head=8, d_k=64, d_v=64,
            d_model=512, d_inner=2048, dropout=0.0, n_position=16, scale_emb=True):

        super().__init__()

        if n_position > 0:
            dim_head = d_word_vec // n_head
            self.position_enc = RotaryEmbedding(max(dim_head // 2, 32)) #PositionalEncoding(d_word_vec, n_position=n_position)
        else:
            self.position_enc = lambda x: x
        self.dropout = nn.Dropout(p=dropout)
        self.layer_stack = nn.ModuleList([
            EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
            for _ in range(n_layers)])
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
        self.scale_emb = scale_emb
        self.d_model = d_model

    def forward(self, src_seq, causal_mask = None, return_attns=False):
        if len(src_seq.shape) == 2:
            src_seq = src_seq.unsqueeze(1)
        B, L, D = src_seq.shape

        enc_slf_attn_list = []

        causal_mask = causal_mask

        enc_output = src_seq
        if self.scale_emb:
            enc_output = enc_output * self.d_model ** 0.5
        # --------- #
        # Apply rotary position embeddings
        pos_emb = self.position_enc.forward_from_seq_len(enc_output.shape[1])
        freqs, _ = pos_emb
        # --------- #
        enc_output = self.dropout(enc_output)
        enc_output = self.layer_norm(enc_output)

        for enc_layer in self.layer_stack:
            enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=causal_mask, rotary_frequencies=freqs)
            enc_slf_attn_list += [enc_slf_attn] if return_attns else []

        if return_attns:
            return enc_output, enc_slf_attn_list
        return enc_output


# gated cross attention
class MaskedCrossAttention(nn.Module):
    def __init__(
        self,
        *,
        dim,
        dim_audio,
        max_window_per_audio, 
        dim_head=64,
        heads=8,
        only_attend_immediate_media=True,
    ):
        super().__init__()
        self.max_window_per_audio = max_window_per_audio
        self.scale = dim_head**-0.5
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias=False)
        self.to_kv = nn.Linear(dim_audio, inner_dim * 2, bias=False)
        self.to_out = nn.Linear(inner_dim, dim, bias=False)

        self.only_attend_immediate_media = only_attend_immediate_media

    def forward(
        self, 
        x, 
        media, media_mask, 
        media_locations=None, 
        use_cached_media=False
    ):

        if not use_cached_media:
            assert (
                media_locations.shape[1] == x.shape[1]
            ), f"media_location.shape is {media_locations.shape} but x.shape is {x.shape}"

        T_txt = x.shape[1]
        B, L = media.shape[:2]
        assert media.shape[2] == 1  # extra dim
        assert L % self.max_window_per_audio == 0  # should be 4 or 8 times
        h = self.heads

        x = self.norm(x)

        q = self.to_q(x)
        media = rearrange(media, "b t n d -> b (t n) d")

        k, v = self.to_kv(media).chunk(2, dim=-1)
        q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=h)

        q = q * self.scale

        sim = einsum("... i d, ... j d -> ... i j", q, k)

        # mask padded audio embeddings
        media_mask = rearrange(media_mask, "b i n -> b 1 1 (i n)").bool()  # n = 1 is extra dim
        sim = sim.masked_fill(~media_mask, -torch.finfo(sim.dtype).max)

        assert self.only_attend_immediate_media is False

        # mask media locations
        # if exists(media_locations):
        #     few_shot_mask = torch.zeros(B, T_txt, L).bool().to(sim.device)
        #     for batch_idx in range(B): 
        #         media_locations_b = media_locations[batch_idx].nonzero()  # locations of <audio>
        #         if len(media_locations_b.shape) > 1:
        #             media_locations_b = media_locations_b.squeeze(-1)

        #         for i in range(-1, len(media_locations_b)):
        #             if i == -1:
        #                 if len(media_locations_b) == 1:
        #                     text_start, text_end = 0, T_txt
        #                 else:
        #                     text_start, text_end = 0, media_locations_b[i+1]
                    
        #             elif i == len(media_locations_b) - 1:
        #                 text_start, text_end = media_locations_b[i], T_txt
                    
        #             else:
        #                 text_start, text_end = media_locations_b[i], media_locations_b[i+1]

        #             if self.only_attend_immediate_media:
        #                 look_at_window_start = max(i,0) * self.max_window_per_audio
        #             else:
        #                 look_at_window_start = 0
        #             look_at_window_end = (max(i,0) + 1) * self.max_window_per_audio
                    
        #             few_shot_mask[batch_idx, text_start:text_end, look_at_window_start:look_at_window_end] = True

        #     sim = sim.masked_fill(~few_shot_mask.unsqueeze(1), -torch.finfo(sim.dtype).max)

        sim = sim - sim.amax(dim=-1, keepdim=True).detach()
        attn = sim.softmax(dim=-1)

        if exists(media_locations) and self.only_attend_immediate_media:
            text_without_media_mask = text_time == 0
            text_without_media_mask = rearrange(
                text_without_media_mask, "b i -> b 1 i 1"
            )
            attn = attn.masked_fill(text_without_media_mask, 0.0)

        out = einsum("... i j, ... j d -> ... i d", attn, v)
        out = rearrange(out, "b h n d -> b n (h d)")
        return self.to_out(out)


class GatedCrossAttentionBlock(nn.Module):
    def __init__(
        self,
        *,
        dim,
        dim_audio,
        max_window_per_audio, 
        dim_head=64,
        heads=8,
        ff_mult=4,
        only_attend_immediate_media=True,
    ):
        super().__init__()
        self.attn = MaskedCrossAttention(
            dim=dim,
            dim_audio=dim_audio,
            max_window_per_audio=max_window_per_audio,
            dim_head=dim_head,
            heads=heads,
            only_attend_immediate_media=only_attend_immediate_media,
        )
        self.attn_gate = nn.Parameter(torch.tensor([0.0]))

        self.ff = FeedForward(dim, mult=ff_mult)
        self.ff_gate = nn.Parameter(torch.tensor([0.0]))

    def forward(
        self,
        x,
        media,
        media_mask,
        media_locations=None,
        use_cached_media=False,
    ):
        x = (
            self.attn(
                x,
                media,
                media_mask,
                media_locations=media_locations,
                use_cached_media=use_cached_media,
            )
            * self.attn_gate.tanh()
            + x
        )
        x = self.ff(x) * self.ff_gate.tanh() + x

        return x


if __name__ == '__main__':
    enc = TransformerEncoder().cuda()
    x = torch.randn(2, 1000, 512).cuda()
    mask = torch.ones(2, 1000).cuda()
    output = enc(x,causal_mask=mask)
    enc._use_gradient_checkpointing = True
    print(output.shape)