Spaces:
Running
on
L4
Running
on
L4
File size: 12,090 Bytes
a344f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import time
import os
from tqdm import tqdm
import sys
from copy import deepcopy
from contextlib import suppress
import torch
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import (
FullStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp.api import FullOptimStateDictConfig
from einops import rearrange
class Dict2Class:
def __init__(self, data_dict):
for key, value in data_dict.items():
setattr(self, key, value)
class SysLogger(object):
def __init__(self, filename="../log/log.log"):
self.terminal = sys.stdout
self.log = open(filename, "a")
def write(self, message):
self.terminal.write(message+'\n')
self.log.write(message)
def get_cast_dtype(precision: str):
cast_dtype = None
if precision == "bf16":
cast_dtype = torch.bfloat16
elif precision == "fp16":
cast_dtype = torch.float16
return cast_dtype
def get_mp_policy_dtype(precision: str):
if "bfloat16" in precision or "bf16" in precision:
return torch.bfloat16
elif precision == "fp16":
return torch.float16
else:
return torch.float32
def get_autocast(precision, cache_enabled=True):
if precision == "amp":
return torch.cuda.amp.autocast(cache_enabled=cache_enabled)
elif precision == "amp_bfloat16" or precision == "amp_bf16":
return lambda: torch.cuda.amp.autocast(
dtype=torch.bfloat16, cache_enabled=cache_enabled
)
else:
return suppress
def train_one_epoch(
args,
model,
epoch,
trainloader,
tokenizer,
optimizer,
lr_scheduler,
device_id,
tb
):
# setup loaders
num_batches_per_epoch = len(trainloader)
total_training_steps = num_batches_per_epoch * args.num_epochs
print('num_batches_per_epoch={}, total_training_steps={}'.format(num_batches_per_epoch, total_training_steps))
autocast = get_autocast(
args.precision, cache_enabled=(not args.fsdp)
) # if fsdp, disable cache to save memory
cast_dtype = get_cast_dtype(args.precision)
# setup model
media_token_id = tokenizer("<audio>", add_special_tokens=False)["input_ids"][-1]
assert media_token_id == tokenizer.encode("<audio>")[-1]
endofchunk_token_id = tokenizer("<|endofchunk|>", add_special_tokens=False)["input_ids"][-1]
model.train()
# setup logging
step_time_m = AverageMeter()
data_time_m = AverageMeter()
end = time.time()
# loop through dataloader
for num_steps, batch in tqdm(
enumerate(trainloader),
disable=args.rank != 0,
total=total_training_steps,
initial=(epoch * num_batches_per_epoch)
):
data_time_m.update(time.time() - end)
global_step = num_steps + epoch * num_batches_per_epoch
#### FORWARD PASS ####
audio_clips = batch["audio_clips"].to(device_id, dtype=cast_dtype, non_blocking=True) # (B, N_WINDOWS, WINDOW_LENGTH)
audio_embed_mask = batch["audio_embed_mask"].to(device_id, dtype=cast_dtype, non_blocking=True) # (B, N_WINDOWS)
input_ids = batch["input_ids"].to(device_id, dtype=torch.long, non_blocking=True) # (B, N_TOKENS)
attention_mask = batch["attention_mask"].to(device_id, dtype=cast_dtype, non_blocking=True) # (B, N_TOKENS)
# set up labels; language model is expected to handle shifting
labels = input_ids.clone()
labels[labels == tokenizer.pad_token_id] = -100
labels[:, :1] = -100
labels[labels == tokenizer.encode("<audio>")[-1]] = -100
# mask all prompts except for between <SEP> and <|endofchunk|>
sep_locations = labels == tokenizer.sep_token_id
eoc_locations = labels == endofchunk_token_id
if not all(sep_locations.sum(dim=1) == eoc_locations.sum(dim=1)):
print("Warning: <SEP>-<EoC> pairing mismatch at step {} due to max_token limit.".format(num_steps))
for i in range(labels.shape[0]):
shouldmask = True
for j in range(labels.shape[1]):
if shouldmask and (labels[i][j] != tokenizer.eos_token_id):
masked_value = -100
else:
masked_value = labels[i][j]
if labels[i][j] == tokenizer.sep_token_id:
shouldmask = False
elif labels[i][j] == endofchunk_token_id:
shouldmask = True
labels[i][j] = masked_value
if labels[i][-1] not in [-100, tokenizer.eos_token_id, tokenizer.pad_token_id, endofchunk_token_id]:
for j in range(labels.shape[1]-1, -1, -1):
if labels[i][j] not in [-100, tokenizer.eos_token_id, endofchunk_token_id]:
labels[i][j] = -100
else:
break
labels = labels.to(device_id)
# gradient accumulation w/ fsdp cpu offloading requires a no_sync context manager
with autocast():
output = model(
audio_x=audio_clips,
audio_x_mask=audio_embed_mask,
lang_x=input_ids,
attention_mask=attention_mask,
labels=labels
)
loss = output.loss
divided_loss = loss / args.gradient_accumulation_steps
train_loss = divided_loss * args.loss_multiplier
train_loss.backward()
if (not args.freeze_lm_embeddings) and (
not args.fsdp or args.fsdp_use_orig_params
):
# Mask gradients for input embeddings s.t. we only update the added tokens <audio> and <|endofchunk|>
if args.fsdp:
embed_grad = model.lang_encoder.get_input_embeddings().weight.grad
else:
embed_grad = (
model.module.lang_encoder.get_input_embeddings().weight.grad
)
zero_mask = torch.zeros_like(embed_grad)
zero_mask[media_token_id] = torch.ones_like(zero_mask[media_token_id])
zero_mask[endofchunk_token_id] = torch.ones_like(
zero_mask[endofchunk_token_id]
)
if args.fsdp:
model.lang_encoder.get_input_embeddings().weight.grad = (
embed_grad * zero_mask
)
else:
model.module.lang_encoder.get_input_embeddings().weight.grad = (
embed_grad * zero_mask
)
# clip gradient norm
if args.fsdp:
"""
The way we clip gradients with FSDP is different than the non-FSDP case,
because during FSDP, gradient norms are computed over certain submodules,
rather than the entire model.
At least for OPT-125M, this didn't seem to make a difference in performance.
"""
model.clip_grad_norm_(1.0)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# step optimizer and log
if (((num_steps + 1) % args.gradient_accumulation_steps) == 0) or (
num_steps == num_batches_per_epoch - 1
):
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# step time and reset end outside of rank 0
step_time_m.update(time.time() - end)
end = time.time()
# rank 0 logging
if args.rank == 0:
samples_per_second = (
args.gradient_accumulation_steps
* args.batch_size
* args.world_size
/ step_time_m.val
)
samples_per_second_per_gpu = (
args.gradient_accumulation_steps
* args.batch_size
/ step_time_m.val
)
log_dict = {
"data_time": data_time_m.avg,
"step_time": step_time_m.avg,
"samples_per_second": samples_per_second,
"samples_per_second_per_gpu": samples_per_second_per_gpu,
"lr": optimizer.param_groups[0]["lr"],
"loss": loss.item()
}
if ((num_steps + 1) % args.logging_steps == 0):
for key in log_dict:
tb.add_scalar("Train/{}".format(key), log_dict[key], global_step)
step_time_m.reset()
data_time_m.reset()
# Log loss to console
if ((num_steps + 1) % args.logging_steps == 0):
print(
f"Step {num_steps+1}/{num_batches_per_epoch} of epoch {epoch+1}/{args.num_epochs} complete. Loss: {loss.item():.3f}\n"
)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def filter_state_dict_to_trainable(model, state_dict):
"""
Remove non-trainable parameters from model state dict.
Exception: Embeddings will not be removed, even if frozen.
This is because we need the new <audio> <|endofchunk|> tokens to
be consistent across initializations.
"""
for (
name,
p,
) in model.named_parameters(): # won't work for fsdp + use_orig_params=False
if "fsdp" in name:
continue
if "embed" in name or isinstance(p, torch.nn.Embedding):
continue
if not p.requires_grad:
name = name.replace("._checkpoint_wrapped_module", "")
if name in state_dict:
del state_dict[name]
else:
print(f"WARNING: filtering but {name} not in state_dict")
# also remove the keys in state_dict generated from
# lang_encoder.old_decoder_blocks and lang_encoder.gated_cross_attn_layers
# because these are already saved in lang_encoder.model...
to_delete = [
n
for n in state_dict.keys()
if ("lang_encoder.old_decoder_blocks" in n)
or ("lang_encoder.gated_cross_attn_layers" in n)
or ("vision_encoder" in n)
]
for name in to_delete:
del state_dict[name]
return state_dict
def save_checkpoint(model, optimizer, lr_scheduler, epoch, args):
"""
Save training checkpoint with model, optimizer, and lr_scheduler state.
"""
if args.fsdp:
FSDP.set_state_dict_type(
model,
StateDictType.FULL_STATE_DICT,
FullStateDictConfig(rank0_only=True, offload_to_cpu=True),
FullOptimStateDictConfig(rank0_only=True),
)
model_state = model.state_dict()
optim_state = FSDP.optim_state_dict(model, optimizer, group=args.my_group)
else:
model_state = model.state_dict()
optim_state = optimizer.state_dict()
if args.rank == 0:
if not (args.fsdp and not args.fsdp_use_orig_params):
model_state = filter_state_dict_to_trainable(model, model_state)
checkpoint_dir = os.path.join(args.expdir, args.run_name)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
checkpoint_dict = {
"epoch": epoch,
"model_state_dict": model_state,
"optimizer_state_dict": optim_state,
"lr_scheduler_state_dict": lr_scheduler.state_dict(),
}
print(f"Saving checkpoint to {checkpoint_dir}/checkpoint_{epoch}.pt")
torch.save(checkpoint_dict, f"{checkpoint_dir}/checkpoint_{epoch}.pt")
if args.delete_previous_checkpoint:
if epoch > 0 and (epoch-1) % 5 != 0:
os.remove(f"{checkpoint_dir}/checkpoint_{epoch-1}.pt")
|