Spaces:
Sleeping
Sleeping
File size: 21,873 Bytes
a344f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
import sys
sys.path.append('../')
from typing import Optional
from copy import deepcopy
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, Wav2Vec2FeatureExtractor, WhisperFeatureExtractor, WhisperModel
# from .modeling_whisper import WhisperModel
from my_laion_clap.CLAP.src.laion_clap.clap_module.htsat import create_htsat_model
from my_ms_clap.src.CLAPWrapper import CLAPWrapper
import torch
import torchaudio
import torchaudio.transforms as T
import numpy as np
from torch import nn
import torchvision.transforms
from contextlib import suppress
try:
from .flamingo import Flamingo
from .flamingo_lm import FlamingoLMMixin
from .utils import extend_instance
except:
from flamingo import Flamingo
from flamingo_lm import FlamingoLMMixin
from utils import extend_instance
def int16_to_float32(x):
return (x / 32767.0).astype(np.float32)
def float32_to_int16(x):
x = np.clip(x, a_min=-1., a_max=1.)
return (x * 32767.).astype(np.int16)
def int16_to_float32_torch(x):
return (x / 32767.0).type(torch.float32)
def float32_to_int16_torch(x):
x = torch.clamp(x, min=-1., max=1.)
return (x * 32767.).type(torch.int16)
class CLAPAudioCfp:
model_type: str = "HTSAT"
model_name: str = "large"
sample_rate: int = 16000
audio_length: int = 1024
window_size: int = 1024
hop_size: int = 160
fmin: int = 50
fmax: int = 14000
class_num: int = 527
mel_bins: int = 64
clip_samples: int = 160000
class CLAP(nn.Module):
def __init__(self, clap_config):
super(CLAP, self).__init__()
self.clap_config = clap_config
self.method = clap_config["method"]
device_id = f'cuda:{torch.cuda.current_device()}'
if ('finetune' in clap_config) and clap_config['finetune']:
self.finetune = True
print('Finetuning CLAP encoder as well!')
else:
self.finetune = False
audio_cfg = CLAPAudioCfp()
enable_fusion = True
fusion_type = "aff_2d"
self.nvclap = create_htsat_model(audio_cfg, enable_fusion, fusion_type)
clap_state_dict = torch.load(clap_config["checkpoint"], map_location = 'cpu')
clap_state_dict_copy = clap_state_dict['state_dict'].copy()
for key in list(clap_state_dict['state_dict'].keys()):
if 'audio' in key:
clap_state_dict_copy[key.replace('module.audio_branch.','')] = clap_state_dict_copy[key]
del clap_state_dict_copy[key]
else:
del clap_state_dict_copy[key]
self.nvclap.load_state_dict(clap_state_dict_copy, strict = False)
self.nvclap = self.nvclap.to(device_id)
for param in self.nvclap.parameters():
param.requires_grad = self.finetune
if self.finetune:
self.nvclap.train()
else:
self.nvclap.eval()
print('loaded NVCLAP model: {}'.format(clap_config["checkpoint"]))
def get_mel(self, audio_data):
# mel shape: (n_mels, T)
mel_tf = torchaudio.transforms.MelSpectrogram(
sample_rate=16000,
n_fft=1024,
win_length=1024,
hop_length=160,
center=True,
pad_mode="reflect",
power=2.0,
norm=None,
onesided=True,
n_mels=64,
f_min=50,
f_max=14000
).to(audio_data.device)
mel = mel_tf(audio_data)
# we use log mel spectrogram as input
mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel)
return mel.T # (T, n_mels)
def get_audio_features(self, sample, audio_data, max_len, data_truncating, data_filling, require_grad=False):
grad_fn = suppress if require_grad else torch.no_grad
with grad_fn():
if len(audio_data) > max_len:
if data_truncating == "rand_trunc":
longer = torch.tensor([True])
elif data_truncating == "fusion":
# fusion
mel = self.get_mel(audio_data)
# split to three parts
chunk_frames = max_len // 160 + 1 # the +1 related to how the spectrogram is computed
total_frames = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is
# larger than max_len but smaller than max_len+hop_size.
# In this case, we just use the whole audio.
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
else:
ranges = np.array_split(list(range(0, total_frames - chunk_frames + 1)), 3)
if len(ranges[1]) == 0:
# if the audio is too short, we just use the first chunk
ranges[1] = [0]
if len(ranges[2]) == 0:
# if the audio is too short, we just use the first chunk
ranges[2] = [0]
# randomly choose index for each part
idx_front = np.random.choice(ranges[0])
idx_middle = np.random.choice(ranges[1])
idx_back = np.random.choice(ranges[2])
# select mel
mel_chunk_front = mel[idx_front:idx_front + chunk_frames, :]
mel_chunk_middle = mel[idx_middle:idx_middle + chunk_frames, :]
mel_chunk_back = mel[idx_back:idx_back + chunk_frames, :]
# shrink the mel
mel_shrink = torchvision.transforms.Resize(size=[chunk_frames, 64])(mel[None])[0]
# logging.info(f"mel_shrink.shape: {mel_shrink.shape}")
# stack
mel_fusion = torch.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([True])
else:
raise NotImplementedError(
f"data_truncating {data_truncating} not implemented"
)
# random crop to max_len (for compatibility)
overflow = len(audio_data) - max_len
idx = np.random.randint(0, overflow + 1)
audio_data = audio_data[idx: idx + max_len]
else: # padding if too short
if len(audio_data) < max_len: # do nothing if equal
if data_filling == "repeatpad":
n_repeat = int(max_len / len(audio_data))
audio_data = audio_data.repeat(n_repeat)
# audio_data = audio_data.unsqueeze(0).unsqueeze(0).unsqueeze(0)
# audio_data = F.interpolate(audio_data,size=max_len,mode="bicubic")[0,0,0]
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "pad":
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "repeat":
n_repeat = int(max_len / len(audio_data))
audio_data = audio_data.repeat(n_repeat + 1)[:max_len]
else:
raise NotImplementedError(
f"data_filling {data_filling} not implemented"
)
if data_truncating == 'fusion':
mel = self.get_mel(audio_data)
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
sample["longer"] = longer
sample["waveform"] = audio_data
return sample
def load_audio(self, clips):
# waveform, sr = torchaudio.load(filename)
# waveform = torchaudio.functional.resample(waveform, orig_freq=self.clap_config['sampling_rate'], new_freq=16000)
processed_clips = []
for clip in clips:
audio_data = int16_to_float32_torch(float32_to_int16_torch(clip))
sample = self.get_audio_features({}, audio_data, 160000, "fusion", "repeatpad")
processed_clips.append(sample)
waveforms = {}
waveforms["mel_fusion"] = torch.stack([item["mel_fusion"] for item in processed_clips], dim=0)
waveforms["longer"] = torch.stack([item["longer"] for item in processed_clips], dim=0)
waveforms["waveform"] = torch.stack([item["waveform"] for item in processed_clips], dim=0)
return waveforms
def forward(self, audio_clips):
# It will handle various segments, 1 audio will have various segments [B X n_segments X time]
# expand batch dimension during inference
if len(audio_clips.shape) == 2:
audio_clips = audio_clips.unsqueeze(0)
assert len(audio_clips.shape) == 3
audio_embeds = []
for audio_clip in audio_clips:
audio = self.load_audio(audio_clip)
audio_embed = self.nvclap(audio) #.reshape(-1, self.clap_config["audio_embed_dim"])
audio_embeds.append(audio_embed)
audio_embeds = torch.stack(audio_embeds, dim=0)
# audio_embeds.requires_grad = self.finetune
return audio_embeds
class Whisper(nn.Module):
def __init__(self, whisper_config):
super(Whisper, self).__init__()
self.whisper_config = whisper_config
self.method = self.whisper_config["method"]
device_id = f'cuda:{torch.cuda.current_device()}'
if ('finetune' in self.whisper_config) and self.whisper_config['finetune']:
self.finetune = True
print('Finetuning Whisper encoder as well!')
else:
self.finetune = False
self.whisper = WhisperModel.from_pretrained(self.whisper_config['path']).encoder
self.whisper = self.whisper.to(device_id)
self.wav_processor = WhisperFeatureExtractor.from_pretrained(self.whisper_config['path'])
for param in self.whisper.parameters():
param.requires_grad = self.finetune
if self.finetune:
self.whisper.train()
else:
self.whisper.eval()
print('loaded Whisper model: {}'.format(self.whisper_config['path']))
def load_audio(self, clips):
device_id = f'cuda:{torch.cuda.current_device()}'
sample = self.wav_processor(clips.cpu().numpy(), sampling_rate=self.whisper_config['sampling_rate'], return_tensors="pt")["input_features"].to(device_id)
return sample
def forward(self, audio_clips):
# It will handle various segments, 1 audio will have various segments [batch X n_segments X time]
if len(audio_clips.shape) == 2:
audio_clips = audio_clips.unsqueeze(0)
assert len(audio_clips.shape) == 3
audio_embeds = []
for audio_clip in audio_clips:
audio = self.load_audio(audio_clip)
audio_embed = self.whisper(audio).last_hidden_state #.reshape(-1, self.whisper_config["audio_embed_dim"])
audio_embeds.append(audio_embed)
audio_embeds = torch.stack(audio_embeds, dim=0)
# audio_embeds.requires_grad = self.finetune
return audio_embeds
class MERT(nn.Module):
def __init__(self, mert_config):
super(MERT, self).__init__()
self.mert_config = mert_config
self.method = mert_config["method"]
device_id = f'cuda:{torch.cuda.current_device()}'
if ('finetune' in mert_config) and mert_config['finetune']:
self.finetune = True
print('Finetuning MERT encoder as well!')
else:
self.finetune = False
self.mert = AutoModel.from_pretrained(mert_config['path'], trust_remote_code=True)
self.mert = self.mert.to(device_id)
self.resampler = T.Resample(16000, mert_config['sampling_rate']).to(device_id)
self.wav_processor = Wav2Vec2FeatureExtractor.from_pretrained(mert_config['path'],trust_remote_code=True)
for param in self.mert.parameters():
param.requires_grad = self.finetune
if self.finetune:
self.mert.train()
else:
self.mert.eval()
print('loaded MERT model: {}'.format(mert_config['path']))
def load_audio(self, clips):
device_id = f'cuda:{torch.cuda.current_device()}'
clips = self.resampler(clips.float()).float()
sample = self.wav_processor(clips, sampling_rate=self.mert_config['sampling_rate'], return_tensors="pt")["input_values"]
if len(sample.shape) == 1:
sample = sample.unsqueeze(0)
return sample.to(device_id)
def forward(self, audio_clips):
# It will handle various segments, 1 audio will have various segments [batch X n_segments X time]
if len(audio_clips.shape) == 2:
audio_clips = audio_clips.unsqueeze(0)
assert len(audio_clips.shape) == 3
audio_embeds = []
for audio_clip in audio_clips:
audio = self.load_audio(audio_clip).to(torch.bfloat16) # all processing happens in float
if len(audio.shape) > 2:
audio = audio.squeeze(0)
audio_embed = self.mert(audio, output_hidden_states=True).last_hidden_state #.reshape(-1, self.mert_config["audio_embed_dim"])
audio_embeds.append(audio_embed)
audio_embeds = torch.stack(audio_embeds, dim=0)
audio_embeds.requires_grad = self.finetune
return audio_embeds
def create_model_and_transforms(
clap_config: dict,
lang_encoder_path: str,
tokenizer_path: str,
audio_transformer_kwargs: dict,
cross_attn_every_n_layers: int = 1,
use_local_files: bool = False,
decoder_layers_attr_name: str = None,
freeze_lm_embeddings: bool = False,
unfreeze_full_lm: bool = False,
cache_dir: Optional[str] = None,
**flamingo_kwargs,
):
clap = CLAP(clap_config)
text_tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path,
local_files_only=use_local_files,
trust_remote_code=True,
cache_dir=cache_dir,
)
text_tokenizer.add_special_tokens(
{"additional_special_tokens": ["<audio>", "<|endofchunk|>", "<|PAD_TOKEN|>"]}
)
text_tokenizer.pad_token = None
text_tokenizer.pad_token_id = None
text_tokenizer.pad_token = "<|PAD_TOKEN|>"
text_tokenizer.pad_token_id = text_tokenizer.encode("<|PAD_TOKEN|>")[-1]
if text_tokenizer.sep_token is None:
text_tokenizer.add_special_tokens({"sep_token": "<SEP>"})
lang_encoder = AutoModelForCausalLM.from_pretrained(
lang_encoder_path,
local_files_only=use_local_files,
trust_remote_code=True,
cache_dir=cache_dir,
)
extend_instance(lang_encoder, FlamingoLMMixin)
if decoder_layers_attr_name is None:
decoder_layers_attr_name = _infer_decoder_layers_attr_name(lang_encoder)
lang_encoder.set_decoder_layers_attr_name(decoder_layers_attr_name)
lang_encoder.resize_token_embeddings(len(text_tokenizer))
if ('finetune' in clap_config) and clap_config['finetune']:
unfreeze_clap = True
else:
unfreeze_clap = False
model = Flamingo(
clap,
unfreeze_clap,
lang_encoder,
text_tokenizer.encode("<|endofchunk|>")[-1],
text_tokenizer.encode("<audio>")[-1],
text_tokenizer.sep_token_id,
clap_embed_dim = clap_config["audio_embed_dim"],
audio_transformer_kwargs=audio_transformer_kwargs,
cross_attn_every_n_layers=cross_attn_every_n_layers,
**flamingo_kwargs,
)
model.requires_grad_(False)
assert sum(p.numel() for p in model.parameters() if p.requires_grad) == 0
model.audio_transformer_clap.requires_grad_(True)
model.lang_encoder.gated_cross_attn_layers_sound.requires_grad_(True)
if not freeze_lm_embeddings:
model.lang_encoder.get_input_embeddings().requires_grad_(True)
if unfreeze_full_lm:
model.lang_encoder.requires_grad_(True)
if unfreeze_clap:
model.clap.requires_grad_(True)
print("Flamingo model initialized with {:,} trainable parameters (audio transformer has {:,}, LM has {:,})".format(
sum(p.numel() for p in model.parameters() if p.requires_grad),
sum(p.numel() for p in model.audio_transformer_clap.parameters() if p.requires_grad),
sum(p.numel() for p in model.lang_encoder.parameters() if p.requires_grad),
))
return model, text_tokenizer
def _infer_decoder_layers_attr_name(model):
for k in __KNOWN_DECODER_LAYERS_ATTR_NAMES:
if k.lower() in model.__class__.__name__.lower():
return __KNOWN_DECODER_LAYERS_ATTR_NAMES[k]
raise ValueError(
f"We require the attribute name for the nn.ModuleList in the decoder storing the transformer block layers. Please supply this string manually."
)
__KNOWN_DECODER_LAYERS_ATTR_NAMES = {
"opt": "model.decoder.layers",
"gptj": "transformer.h",
"gpt-j": "transformer.h",
"pythia": "gpt_neox.layers",
"llama": "model.layers",
"gptneoxforcausallm": "gpt_neox.layers",
"mpt": "transformer.blocks",
"mosaicgpt": "transformer.blocks",
"qwen": "model.layers",
}
if __name__ == '__main__':
import torch
torch.set_printoptions(profile="full") # only in debug mode
import sys
sys.path.append('../')
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import yaml
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default='../configs/config.yaml', help='yaml config path')
args = parser.parse_args()
config = yaml.load(open(args.config), Loader=yaml.FullLoader)
data_config = config['data_config']
model_config = config["model_config"]
clap_config = config["clap_config"]
model, tokenizer = create_model_and_transforms(
**model_config,
clap_config=clap_config,
use_local_files=False,
gradient_checkpointing=True,
freeze_lm_embeddings=True
)
model = model.cuda()
from data.data import AudioTextData, DataCollator
from torch.utils.data import DataLoader
batch_size = 8
trainset = AudioTextData(
**data_config, clap_config=clap_config, tokenizer=tokenizer,
epoch=1, force_reblend=True
)
data_collator = DataCollator(tokenizer)
trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True, collate_fn=data_collator, num_workers=4)
for step, batch in enumerate(trainloader):
audio_clips = batch["audio_clips"].cuda()
audio_embed_mask = batch["audio_embed_mask"].cuda()
input_ids = batch["input_ids"].cuda()
attention_mask = batch["attention_mask"].cuda()
print('batch {}:'.format(step+1), audio_clips.shape, audio_embed_mask.shape, input_ids.shape, attention_mask.shape)
labels = input_ids.clone()
labels[labels == tokenizer.pad_token_id] = -100
labels[:, :2] = -100
labels[labels == tokenizer.encode("<audio>")[-1]] = -100
sep_locations = labels == tokenizer.sep_token_id
endofchunk_token_id = tokenizer.encode("<|endofchunk|>")[-1]
eoc_locations = labels == endofchunk_token_id
if not all(sep_locations.sum(dim=1) == eoc_locations.sum(dim=1)):
print("Warning: sep loc {} but eoc loc {}".format(sep_locations.sum(dim=1), eoc_locations.sum(dim=1)))
for input_id in labels:
input_id[input_id==-100] = tokenizer.encode("-")[-1]
print(input_id, '\n', tokenizer.decode(input_id))
for i in range(labels.shape[0]):
shouldmask = True
for j in range(labels.shape[1]):
if shouldmask and (labels[i][j] != tokenizer.eos_token_id):
masked_value = -100
else:
masked_value = labels[i][j]
if labels[i][j] == tokenizer.sep_token_id:
shouldmask = False
elif labels[i][j] == endofchunk_token_id:
shouldmask = True
labels[i][j] = masked_value
if labels[i][-1] not in [-100, tokenizer.eos_token_id, tokenizer.pad_token_id, endofchunk_token_id]:
debug_masked_labels_in_the_end = []
for j in range(labels.shape[1]-1, -1, -1):
if labels[i][j] not in [-100, tokenizer.eos_token_id, endofchunk_token_id]:
debug_masked_labels_in_the_end.insert(0, deepcopy(labels[i][j].item()))
labels[i][j] = -100
else:
break
print('hit max_token and masking ids from the end:', \
tokenizer.decode(torch.LongTensor(debug_masked_labels_in_the_end).to(labels.device))
)
if step == 50:
break
|