Spaces:
Running
on
L4
Running
on
L4
File size: 6,141 Bytes
a344f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import numpy as np
import time
import torch
import torch.nn as nn
def move_data_to_device(x, device):
if 'float' in str(x.dtype):
x = torch.Tensor(x)
elif 'int' in str(x.dtype):
x = torch.LongTensor(x)
else:
return x
return x.to(device)
def do_mixup(x, mixup_lambda):
"""Mixup x of even indexes (0, 2, 4, ...) with x of odd indexes
(1, 3, 5, ...).
Args:
x: (batch_size * 2, ...)
mixup_lambda: (batch_size * 2,)
Returns:
out: (batch_size, ...)
"""
out = (x[0 :: 2].transpose(0, -1) * mixup_lambda[0 :: 2] + \
x[1 :: 2].transpose(0, -1) * mixup_lambda[1 :: 2]).transpose(0, -1)
return out
def append_to_dict(dict, key, value):
if key in dict.keys():
dict[key].append(value)
else:
dict[key] = [value]
def interpolate(x, ratio):
"""Interpolate data in time domain. This is used to compensate the
resolution reduction in downsampling of a CNN.
Args:
x: (batch_size, time_steps, classes_num)
ratio: int, ratio to interpolate
Returns:
upsampled: (batch_size, time_steps * ratio, classes_num)
"""
(batch_size, time_steps, classes_num) = x.shape
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
return upsampled
def pad_framewise_output(framewise_output, frames_num):
"""Pad framewise_output to the same length as input frames. The pad value
is the same as the value of the last frame.
Args:
framewise_output: (batch_size, frames_num, classes_num)
frames_num: int, number of frames to pad
Outputs:
output: (batch_size, frames_num, classes_num)
"""
pad = framewise_output[:, -1 :, :].repeat(1, frames_num - framewise_output.shape[1], 1)
"""tensor for padding"""
output = torch.cat((framewise_output, pad), dim=1)
"""(batch_size, frames_num, classes_num)"""
return output
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def count_flops(model, audio_length):
"""Count flops. Code modified from others' implementation.
"""
multiply_adds = True
list_conv2d=[]
def conv2d_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * (2 if multiply_adds else 1)
bias_ops = 1 if self.bias is not None else 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_conv2d.append(flops)
list_conv1d=[]
def conv1d_hook(self, input, output):
batch_size, input_channels, input_length = input[0].size()
output_channels, output_length = output[0].size()
kernel_ops = self.kernel_size[0] * (self.in_channels / self.groups) * (2 if multiply_adds else 1)
bias_ops = 1 if self.bias is not None else 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_length
list_conv1d.append(flops)
list_linear=[]
def linear_hook(self, input, output):
batch_size = input[0].size(0) if input[0].dim() == 2 else 1
weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
bias_ops = self.bias.nelement()
flops = batch_size * (weight_ops + bias_ops)
list_linear.append(flops)
list_bn=[]
def bn_hook(self, input, output):
list_bn.append(input[0].nelement() * 2)
list_relu=[]
def relu_hook(self, input, output):
list_relu.append(input[0].nelement() * 2)
list_pooling2d=[]
def pooling2d_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size * self.kernel_size
bias_ops = 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_pooling2d.append(flops)
list_pooling1d=[]
def pooling1d_hook(self, input, output):
batch_size, input_channels, input_length = input[0].size()
output_channels, output_length = output[0].size()
kernel_ops = self.kernel_size[0]
bias_ops = 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_length
list_pooling2d.append(flops)
def foo(net):
childrens = list(net.children())
if not childrens:
if isinstance(net, nn.Conv2d):
net.register_forward_hook(conv2d_hook)
elif isinstance(net, nn.Conv1d):
net.register_forward_hook(conv1d_hook)
elif isinstance(net, nn.Linear):
net.register_forward_hook(linear_hook)
elif isinstance(net, nn.BatchNorm2d) or isinstance(net, nn.BatchNorm1d):
net.register_forward_hook(bn_hook)
elif isinstance(net, nn.ReLU):
net.register_forward_hook(relu_hook)
elif isinstance(net, nn.AvgPool2d) or isinstance(net, nn.MaxPool2d):
net.register_forward_hook(pooling2d_hook)
elif isinstance(net, nn.AvgPool1d) or isinstance(net, nn.MaxPool1d):
net.register_forward_hook(pooling1d_hook)
else:
print('Warning: flop of module {} is not counted!'.format(net))
return
for c in childrens:
foo(c)
# Register hook
foo(model)
device = device = next(model.parameters()).device
input = torch.rand(1, audio_length).to(device)
out = model(input)
total_flops = sum(list_conv2d) + sum(list_conv1d) + sum(list_linear) + \
sum(list_bn) + sum(list_relu) + sum(list_pooling2d) + sum(list_pooling1d)
return total_flops |