Spaces:
Sleeping
Sleeping
File size: 14,328 Bytes
a344f64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
""" Main training script """
import argparse
import functools
import glob
import os
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
import random
import shutil
import sys
sys.path.append('../')
import yaml
import time
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import (
CPUOffload,
MixedPrecision,
ShardingStrategy,
BackwardPrefetch,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
CheckpointWrapper,
CheckpointImpl,
apply_activation_checkpointing,
)
from torch.distributed.fsdp._init_utils import _init_intra_and_inter_node_groups
from torch.distributed.distributed_c10d import _get_default_group
torch.cuda.empty_cache()
from transformers import (
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_linear_schedule_with_warmup,
)
from data.data import get_audiotext_dataloader # AudioTextData, DataCollator
from distributed import init_distributed_device, world_info_from_env
from train_utils import (
train_one_epoch,
get_mp_policy_dtype,
save_checkpoint,
Dict2Class,
get_autocast,
get_cast_dtype
)
from valid_utils import validation_losses
from src.factory import create_model_and_transforms
def random_seed(seed=42, rank=0):
torch.manual_seed(seed + rank)
np.random.seed(seed + rank)
random.seed(seed + rank)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default='../config/config.yaml', help='yaml config path')
parsed_args = parser.parse_args()
config = yaml.load(open(parsed_args.config), Loader=yaml.FullLoader)
data_config = config['data_config']
model_config = config['model_config']
clap_config = config["clap_config"]
args = Dict2Class(config['train_config'])
if 'sft_config' in config:
sft_config = config['sft_config']
unfreeze_full_lm = sft_config['unfreeze_full_lm']
else:
sft_config = None
unfreeze_full_lm = False
# get paths done
exp_path = os.path.join(args.expdir, args.run_name)
os.makedirs(exp_path, exist_ok=True)
print('exp_path:', exp_path)
shutil.copy(parsed_args.config, os.path.join(exp_path, 'config.yaml'))
data_config["dataset_blending_output"] = os.path.join(exp_path, data_config["dataset_blending_output"])
# Validate args
if args.fsdp and not args.fsdp_use_orig_params:
print(
"Warning: FSDP is running without fsdp_use_orig_params flag. "
+ "This is not recommended because it means we will use uniform weight decay"
+ " and train all embeddings, not just the newly added ones. "
+ "Note: OPT models are not compatible with fsdp_use_orig_params flag."
)
if args.fsdp and args.fsdp_sharding_strategy == "hybrid":
print(
"Warning: As of torch=2.0.1, the FSDP logic for optim_state_dict() is broken for hybrid sharding."
+ "To make this method work, we need to modify torch.distributed.fsdp._optim_utils.py"
+ "Copy and paste the code from the _optim_utils.py in this repo into the torch file."
+ "The main issue was the missing group kwarg on line 1596 in _all_gather_optim_state."
)
# Set up distributed training
print('initializing distributed environment')
if args.offline:
os.environ["TRANSFORMERS_OFFLINE"] = "1"
args.local_rank, args.rank, args.world_size = world_info_from_env()
device_id = init_distributed_device(args)
random_seed(args.seed)
# Initialize model
print('creating model')
os.environ["TOKENIZERS_PARALLELISM"] = "false" # disable the tokenizer parallelism warning
model, tokenizer = create_model_and_transforms(
**model_config,
clap_config=clap_config,
use_local_files=args.offline,
gradient_checkpointing=args.gradient_checkpointing,
freeze_lm_embeddings=args.freeze_lm_embeddings,
unfreeze_full_lm=unfreeze_full_lm
)
random_seed(args.seed, args.rank)
# Initialize logging
print(f"Start running training on rank {args.rank}.")
# Load model checkpoint on CPU
checkpoint_list = glob.glob(f"{args.expdir}/{args.run_name}/checkpoint_*.pt")
if len(checkpoint_list) == 0:
print(f"Found no checkpoints for run {args.run_name}.")
resume_from_checkpoint = None
else:
resume_from_checkpoint = sorted(
checkpoint_list, key=lambda x: int(x.split("_")[-1].split(".")[0])
)[-1]
print(
f"Found checkpoint {resume_from_checkpoint} for run {args.run_name}."
)
# load pretrained model
resume_from_epoch = 0
if (resume_from_checkpoint is None) and (sft_config is not None):
# just started SFT
pretrained_path = os.path.join(
sft_config['pretrained_path'],
sft_config['pretrained_ckpt']
)
if args.rank == 0:
print(f"Loading checkpoint from {pretrained_path}")
checkpoint = torch.load(pretrained_path, map_location="cpu")
msd = checkpoint["model_state_dict"]
msd = {k.replace("module.", ""): v for k, v in msd.items()}
# for fsdp, only one rank needs to load the state dict
if not args.fsdp or args.rank == 0:
model.load_state_dict(msd, False)
del checkpoint["model_state_dict"]
del msd
elif resume_from_checkpoint is not None:
# continue training (either pretraining or STF)
if args.rank == 0:
print(f"Loading checkpoint from {resume_from_checkpoint}")
checkpoint = torch.load(resume_from_checkpoint, map_location="cpu")
msd = checkpoint["model_state_dict"]
msd = {k.replace("module.", ""): v for k, v in msd.items()}
resume_from_epoch = checkpoint["epoch"] + 1
# for fsdp, only one rank needs to load the state dict
if not args.fsdp or args.rank == 0:
model.load_state_dict(msd, False)
del checkpoint["model_state_dict"]
del msd
else:
pass
# Initialize FSDP / DDP, and ensure the model is on GPU
print(f"Initializing distributed training with {args.world_size} GPUs.")
if args.fsdp:
print(
f"Before FSDP parameter num: {sum(p.numel() for p in model.parameters())} on rank {args.rank}"
)
# init MixedPrecision
if args.precision != "fp32":
cast_dtype = get_mp_policy_dtype(args.precision)
mp_policy = MixedPrecision(
param_dtype=torch.float32,
reduce_dtype=cast_dtype, # gradient communication
buffer_dtype=cast_dtype,
)
else:
mp_policy = None
# init process groups
if args.fsdp_sharding_strategy == "hybrid":
intra_node_group, inter_node_group = _init_intra_and_inter_node_groups(
_get_default_group()
)
args.my_group = intra_node_group # for optimizer saving
process_group = (intra_node_group, inter_node_group) # for FSDP init
else:
args.my_group = None # for optimizer saving
process_group = None # for FSDP init
# init FSDP
wrapper_kwargs = dict(
process_group=process_group,
cpu_offload=CPUOffload(offload_params=False),
device_id=device_id,
sync_module_states=True, # broadcast loaded ckpt from rank 0 -> all ranks
sharding_strategy=ShardingStrategy.FULL_SHARD
if args.fsdp_sharding_strategy == "full"
else ShardingStrategy.HYBRID_SHARD,
use_orig_params=args.fsdp_use_orig_params,
mixed_precision=mp_policy,
forward_prefetch=True,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
limit_all_gathers=True,
)
model.wrap_fsdp(wrapper_kwargs, device_id)
ddp_model = model
print(
f"After FSDP parameter num: {sum(p.numel() for p in model.parameters())} on rank {args.rank}"
)
print(
f"After FSDP {torch.cuda.memory_allocated()/1024**3:.3} GB on rank {args.rank}"
)
else:
model = model.to(device_id)
ddp_model = DDP(model, device_ids=[device_id])
# Initialize gradient checkpointing
if args.gradient_checkpointing:
non_reentrant_wrapper = functools.partial(
checkpoint_wrapper,
offload_to_cpu=True,
checkpoint_impl=CheckpointImpl.NO_REENTRANT,
)
apply_activation_checkpointing(
ddp_model,
checkpoint_wrapper_fn=non_reentrant_wrapper,
check_fn=lambda m: getattr(m, "_use_gradient_checkpointing", False)
and not isinstance(m, FSDP)
and not isinstance(m, CheckpointWrapper),
)
# Initialize optimizer
params_to_optimize = ddp_model.named_parameters()
params_to_optimize = list(
filter(
lambda x: x[1].requires_grad
and not getattr(x[1], "exclude_from_optimizer", False),
params_to_optimize,
)
)
if not args.fsdp or args.fsdp_use_orig_params:
# apply weight decay only to params in the xattn layers
def get_grouped_params(model):
params_with_wd, params_without_wd = [], []
for n, p in params_to_optimize:
if "gated_cross_attn" in n:
params_with_wd.append(p)
else:
params_without_wd.append(p)
return [
{"params": params_with_wd, "weight_decay": args.weight_decay},
{"params": params_without_wd, "weight_decay": 0.0},
]
optimizer = torch.optim.AdamW(
get_grouped_params(params_to_optimize), lr=args.learning_rate
)
else:
# unclear if we should be using no weight decay or small weight decay for all parameters
optimizer = torch.optim.AdamW(
(p for _, p in params_to_optimize),
lr=args.learning_rate,
weight_decay=args.weight_decay,
)
# load optimizer checkpoint
if resume_from_checkpoint is not None:
osd = checkpoint["optimizer_state_dict"]
if args.fsdp:
osd = FSDP.optim_state_dict_to_load(osd, ddp_model, optimizer)
optimizer.load_state_dict(osd)
del checkpoint["optimizer_state_dict"]
del osd
# Initialize data loaders
AudioTextDataInfo = get_audiotext_dataloader(
data_config, clap_config, tokenizer, args.batch_size, split='train',
epoch=0, force_reblend=True
)
total_training_steps = (
len(AudioTextDataInfo.dataset) // (args.batch_size * args.world_size)
) * args.num_epochs
if args.rank == 0:
print(f"Total training steps: {total_training_steps}")
tb = SummaryWriter(os.path.join(exp_path, 'tensorboard'))
else:
tb = None
# Initialize lr scheduler
if args.lr_scheduler == "linear":
lr_scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=total_training_steps,
)
elif args.lr_scheduler == "cosine":
lr_scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=total_training_steps,
)
else:
lr_scheduler = get_constant_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps
)
# load lr scheduler checkpoint
if resume_from_checkpoint is not None:
lr_scheduler.load_state_dict(checkpoint["lr_scheduler_state_dict"])
del checkpoint["lr_scheduler_state_dict"]
# Start training!
ddp_model.train()
print('start training from epoch {}'.format(resume_from_epoch))
for epoch in range(resume_from_epoch, args.num_epochs):
# force reblending dataset for every epoch
if epoch > 0:
AudioTextDataInfo = get_audiotext_dataloader(
data_config, clap_config, tokenizer, args.batch_size, split='train',
epoch=epoch, force_reblend=True
)
AudioTextDataInfo.set_epoch(epoch)
trainloader = AudioTextDataInfo.dataloader
# train one epoch
train_one_epoch(
args=args,
model=ddp_model,
epoch=epoch,
tokenizer=tokenizer,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
trainloader=trainloader,
device_id=device_id,
tb=tb
)
# save checkpoint
save_checkpoint(ddp_model, optimizer, lr_scheduler, epoch, args)
time.sleep(1.0)
# validation
if epoch % 5 == 0:
torch.distributed.barrier()
try:
with torch.no_grad():
valid_losses = validation_losses(
model=ddp_model,
data_config=data_config,
clap_config=clap_config,
tokenizer=tokenizer,
batch_size=args.batch_size,
autocast=get_autocast(args.precision, cache_enabled=(not args.fsdp)),
cast_dtype=get_cast_dtype(args.precision),
device_id=device_id
)
if args.rank == 0:
for key in valid_losses:
tb.add_scalar("Valid/{}".format(key), valid_losses[key], (epoch+1)*len(trainloader))
except Exception as error:
print("An exception occurred:", error)
torch.distributed.barrier()
# save final checkpoint
save_checkpoint(ddp_model, optimizer, lr_scheduler, epoch, args)
if args.rank == 0:
tb.close()
if __name__ == "__main__":
main()
|