Spaces:
Sleeping
Sleeping
// Protocol Buffers - Google's data interchange format | |
// Copyright 2008 Google Inc. All rights reserved. | |
// https://developers.google.com/protocol-buffers/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are | |
// met: | |
// | |
// * Redistributions of source code must retain the above copyright | |
// notice, this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above | |
// copyright notice, this list of conditions and the following disclaimer | |
// in the documentation and/or other materials provided with the | |
// distribution. | |
// * Neither the name of Google Inc. nor the names of its | |
// contributors may be used to endorse or promote products derived from | |
// this software without specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
// This file defines the map container and its helpers to support protobuf maps. | |
// | |
// The Map and MapIterator types are provided by this header file. | |
// Please avoid using other types defined here, unless they are public | |
// types within Map or MapIterator, such as Map::value_type. | |
namespace google { | |
namespace protobuf { | |
template <typename Key, typename T> | |
class Map; | |
class MapIterator; | |
template <typename Enum> | |
struct is_proto_enum; | |
namespace internal { | |
template <typename Derived, typename Key, typename T, | |
WireFormatLite::FieldType key_wire_type, | |
WireFormatLite::FieldType value_wire_type> | |
class MapFieldLite; | |
template <typename Derived, typename Key, typename T, | |
WireFormatLite::FieldType key_wire_type, | |
WireFormatLite::FieldType value_wire_type> | |
class MapField; | |
template <typename Key, typename T> | |
class TypeDefinedMapFieldBase; | |
class DynamicMapField; | |
class GeneratedMessageReflection; | |
// re-implement std::allocator to use arena allocator for memory allocation. | |
// Used for Map implementation. Users should not use this class | |
// directly. | |
template <typename U> | |
class MapAllocator { | |
public: | |
using value_type = U; | |
using pointer = value_type*; | |
using const_pointer = const value_type*; | |
using reference = value_type&; | |
using const_reference = const value_type&; | |
using size_type = size_t; | |
using difference_type = ptrdiff_t; | |
constexpr MapAllocator() : arena_(nullptr) {} | |
explicit constexpr MapAllocator(Arena* arena) : arena_(arena) {} | |
template <typename X> | |
MapAllocator(const MapAllocator<X>& allocator) // NOLINT(runtime/explicit) | |
: arena_(allocator.arena()) {} | |
pointer allocate(size_type n, const void* /* hint */ = nullptr) { | |
// If arena is not given, malloc needs to be called which doesn't | |
// construct element object. | |
if (arena_ == nullptr) { | |
return static_cast<pointer>(::operator new(n * sizeof(value_type))); | |
} else { | |
return reinterpret_cast<pointer>( | |
Arena::CreateArray<uint8>(arena_, n * sizeof(value_type))); | |
} | |
} | |
void deallocate(pointer p, size_type n) { | |
if (arena_ == nullptr) { | |
::operator delete(p, n * sizeof(value_type)); | |
(void)n; | |
::operator delete(p); | |
} | |
} | |
template <class NodeType, class... Args> | |
void construct(NodeType* p, Args&&... args) { | |
// Clang 3.6 doesn't compile static casting to void* directly. (Issue | |
// #1266) According C++ standard 5.2.9/1: "The static_cast operator shall | |
// not cast away constness". So first the maybe const pointer is casted to | |
// const void* and after the const void* is const casted. | |
new (const_cast<void*>(static_cast<const void*>(p))) | |
NodeType(std::forward<Args>(args)...); | |
} | |
template <class NodeType> | |
void destroy(NodeType* p) { | |
p->~NodeType(); | |
} | |
void construct(pointer p, const_reference t) { new (p) value_type(t); } | |
void destroy(pointer p) { p->~value_type(); } | |
template <typename X> | |
struct rebind { | |
using other = MapAllocator<X>; | |
}; | |
template <typename X> | |
bool operator==(const MapAllocator<X>& other) const { | |
return arena_ == other.arena_; | |
} | |
template <typename X> | |
bool operator!=(const MapAllocator<X>& other) const { | |
return arena_ != other.arena_; | |
} | |
// To support Visual Studio 2008 | |
size_type max_size() const { | |
// parentheses around (std::...:max) prevents macro warning of max() | |
return (std::numeric_limits<size_type>::max)(); | |
} | |
// To support gcc-4.4, which does not properly | |
// support templated friend classes | |
Arena* arena() const { return arena_; } | |
private: | |
using DestructorSkippable_ = void; | |
Arena* arena_; | |
}; | |
template <typename T> | |
using KeyForTree = | |
typename std::conditional<std::is_scalar<T>::value, T, | |
std::reference_wrapper<const T>>::type; | |
// Default case: Not transparent. | |
// We use std::hash<key_type>/std::less<key_type> and all the lookup functions | |
// only accept `key_type`. | |
template <typename key_type> | |
struct TransparentSupport { | |
using hash = std::hash<key_type>; | |
using less = std::less<key_type>; | |
static bool Equals(const key_type& a, const key_type& b) { return a == b; } | |
template <typename K> | |
using key_arg = key_type; | |
}; | |
// If std::string_view is available, we add transparent support for std::string | |
// keys. We use std::hash<std::string_view> as it supports the input types we | |
// care about. The lookup functions accept arbitrary `K`. This will include any | |
// key type that is convertible to std::string_view. | |
template <> | |
struct TransparentSupport<std::string> { | |
static std::string_view ImplicitConvert(std::string_view str) { return str; } | |
// If the element is not convertible to std::string_view, try to convert to | |
// std::string first. | |
// The template makes this overload lose resolution when both have the same | |
// rank otherwise. | |
template <typename = void> | |
static std::string_view ImplicitConvert(const std::string& str) { | |
return str; | |
} | |
struct hash : private std::hash<std::string_view> { | |
using is_transparent = void; | |
template <typename T> | |
size_t operator()(const T& str) const { | |
return base()(ImplicitConvert(str)); | |
} | |
private: | |
const std::hash<std::string_view>& base() const { return *this; } | |
}; | |
struct less { | |
using is_transparent = void; | |
template <typename T, typename U> | |
bool operator()(const T& t, const U& u) const { | |
return ImplicitConvert(t) < ImplicitConvert(u); | |
} | |
}; | |
template <typename T, typename U> | |
static bool Equals(const T& t, const U& u) { | |
return ImplicitConvert(t) == ImplicitConvert(u); | |
} | |
template <typename K> | |
using key_arg = K; | |
}; | |
template <typename Key> | |
using TreeForMap = | |
std::map<KeyForTree<Key>, void*, typename TransparentSupport<Key>::less, | |
MapAllocator<std::pair<const KeyForTree<Key>, void*>>>; | |
inline bool TableEntryIsEmpty(void* const* table, size_t b) { | |
return table[b] == nullptr; | |
} | |
inline bool TableEntryIsNonEmptyList(void* const* table, size_t b) { | |
return table[b] != nullptr && table[b] != table[b ^ 1]; | |
} | |
inline bool TableEntryIsTree(void* const* table, size_t b) { | |
return !TableEntryIsEmpty(table, b) && !TableEntryIsNonEmptyList(table, b); | |
} | |
inline bool TableEntryIsList(void* const* table, size_t b) { | |
return !TableEntryIsTree(table, b); | |
} | |
// This captures all numeric types. | |
inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; } | |
inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) { | |
return StringSpaceUsedExcludingSelfLong(str); | |
} | |
template <typename T, | |
typename = decltype(std::declval<const T&>().SpaceUsedLong())> | |
size_t MapValueSpaceUsedExcludingSelfLong(const T& message) { | |
return message.SpaceUsedLong() - sizeof(T); | |
} | |
constexpr size_t kGlobalEmptyTableSize = 1; | |
PROTOBUF_EXPORT extern void* const kGlobalEmptyTable[kGlobalEmptyTableSize]; | |
// Space used for the table, trees, and nodes. | |
// Does not include the indirect space used. Eg the data of a std::string. | |
template <typename Key> | |
PROTOBUF_NOINLINE size_t SpaceUsedInTable(void** table, size_t num_buckets, | |
size_t num_elements, | |
size_t sizeof_node) { | |
size_t size = 0; | |
// The size of the table. | |
size += sizeof(void*) * num_buckets; | |
// All the nodes. | |
size += sizeof_node * num_elements; | |
// For each tree, count the overhead of the those nodes. | |
// Two buckets at a time because we only care about trees. | |
for (size_t b = 0; b < num_buckets; b += 2) { | |
if (internal::TableEntryIsTree(table, b)) { | |
using Tree = TreeForMap<Key>; | |
Tree* tree = static_cast<Tree*>(table[b]); | |
// Estimated cost of the red-black tree nodes, 3 pointers plus a | |
// bool (plus alignment, so 4 pointers). | |
size += tree->size() * | |
(sizeof(typename Tree::value_type) + sizeof(void*) * 4); | |
} | |
} | |
return size; | |
} | |
template <typename Map, | |
typename = typename std::enable_if< | |
!std::is_scalar<typename Map::key_type>::value || | |
!std::is_scalar<typename Map::mapped_type>::value>::type> | |
size_t SpaceUsedInValues(const Map* map) { | |
size_t size = 0; | |
for (const auto& v : *map) { | |
size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) + | |
internal::MapValueSpaceUsedExcludingSelfLong(v.second); | |
} | |
return size; | |
} | |
inline size_t SpaceUsedInValues(const void*) { return 0; } | |
} // namespace internal | |
// This is the class for Map's internal value_type. Instead of using | |
// std::pair as value_type, we use this class which provides us more control of | |
// its process of construction and destruction. | |
template <typename Key, typename T> | |
struct MapPair { | |
using first_type = const Key; | |
using second_type = T; | |
MapPair(const Key& other_first, const T& other_second) | |
: first(other_first), second(other_second) {} | |
explicit MapPair(const Key& other_first) : first(other_first), second() {} | |
explicit MapPair(Key&& other_first) | |
: first(std::move(other_first)), second() {} | |
MapPair(const MapPair& other) : first(other.first), second(other.second) {} | |
~MapPair() {} | |
// Implicitly convertible to std::pair of compatible types. | |
template <typename T1, typename T2> | |
operator std::pair<T1, T2>() const { // NOLINT(runtime/explicit) | |
return std::pair<T1, T2>(first, second); | |
} | |
const Key first; | |
T second; | |
private: | |
friend class Arena; | |
friend class Map<Key, T>; | |
}; | |
// Map is an associative container type used to store protobuf map | |
// fields. Each Map instance may or may not use a different hash function, a | |
// different iteration order, and so on. E.g., please don't examine | |
// implementation details to decide if the following would work: | |
// Map<int, int> m0, m1; | |
// m0[0] = m1[0] = m0[1] = m1[1] = 0; | |
// assert(m0.begin()->first == m1.begin()->first); // Bug! | |
// | |
// Map's interface is similar to std::unordered_map, except that Map is not | |
// designed to play well with exceptions. | |
template <typename Key, typename T> | |
class Map { | |
public: | |
using key_type = Key; | |
using mapped_type = T; | |
using value_type = MapPair<Key, T>; | |
using pointer = value_type*; | |
using const_pointer = const value_type*; | |
using reference = value_type&; | |
using const_reference = const value_type&; | |
using size_type = size_t; | |
using hasher = typename internal::TransparentSupport<Key>::hash; | |
constexpr Map() : elements_(nullptr) {} | |
explicit Map(Arena* arena) : elements_(arena) {} | |
Map(const Map& other) : Map() { insert(other.begin(), other.end()); } | |
Map(Map&& other) noexcept : Map() { | |
if (other.arena() != nullptr) { | |
*this = other; | |
} else { | |
swap(other); | |
} | |
} | |
Map& operator=(Map&& other) noexcept { | |
if (this != &other) { | |
if (arena() != other.arena()) { | |
*this = other; | |
} else { | |
swap(other); | |
} | |
} | |
return *this; | |
} | |
template <class InputIt> | |
Map(const InputIt& first, const InputIt& last) : Map() { | |
insert(first, last); | |
} | |
~Map() {} | |
private: | |
using Allocator = internal::MapAllocator<void*>; | |
// InnerMap is a generic hash-based map. It doesn't contain any | |
// protocol-buffer-specific logic. It is a chaining hash map with the | |
// additional feature that some buckets can be converted to use an ordered | |
// container. This ensures O(lg n) bounds on find, insert, and erase, while | |
// avoiding the overheads of ordered containers most of the time. | |
// | |
// The implementation doesn't need the full generality of unordered_map, | |
// and it doesn't have it. More bells and whistles can be added as needed. | |
// Some implementation details: | |
// 1. The hash function has type hasher and the equality function | |
// equal_to<Key>. We inherit from hasher to save space | |
// (empty-base-class optimization). | |
// 2. The number of buckets is a power of two. | |
// 3. Buckets are converted to trees in pairs: if we convert bucket b then | |
// buckets b and b^1 will share a tree. Invariant: buckets b and b^1 have | |
// the same non-null value iff they are sharing a tree. (An alternative | |
// implementation strategy would be to have a tag bit per bucket.) | |
// 4. As is typical for hash_map and such, the Keys and Values are always | |
// stored in linked list nodes. Pointers to elements are never invalidated | |
// until the element is deleted. | |
// 5. The trees' payload type is pointer to linked-list node. Tree-converting | |
// a bucket doesn't copy Key-Value pairs. | |
// 6. Once we've tree-converted a bucket, it is never converted back. However, | |
// the items a tree contains may wind up assigned to trees or lists upon a | |
// rehash. | |
// 7. The code requires no C++ features from C++14 or later. | |
// 8. Mutations to a map do not invalidate the map's iterators, pointers to | |
// elements, or references to elements. | |
// 9. Except for erase(iterator), any non-const method can reorder iterators. | |
// 10. InnerMap uses KeyForTree<Key> when using the Tree representation, which | |
// is either `Key`, if Key is a scalar, or `reference_wrapper<const Key>` | |
// otherwise. This avoids unnecessary copies of string keys, for example. | |
class InnerMap : private hasher { | |
public: | |
explicit constexpr InnerMap(Arena* arena) | |
: hasher(), | |
num_elements_(0), | |
num_buckets_(internal::kGlobalEmptyTableSize), | |
seed_(0), | |
index_of_first_non_null_(internal::kGlobalEmptyTableSize), | |
table_(const_cast<void**>(internal::kGlobalEmptyTable)), | |
alloc_(arena) {} | |
~InnerMap() { | |
if (alloc_.arena() == nullptr && | |
num_buckets_ != internal::kGlobalEmptyTableSize) { | |
clear(); | |
Dealloc<void*>(table_, num_buckets_); | |
} | |
} | |
private: | |
enum { kMinTableSize = 8 }; | |
// Linked-list nodes, as one would expect for a chaining hash table. | |
struct Node { | |
value_type kv; | |
Node* next; | |
}; | |
// Trees. The payload type is a copy of Key, so that we can query the tree | |
// with Keys that are not in any particular data structure. | |
// The value is a void* pointing to Node. We use void* instead of Node* to | |
// avoid code bloat. That way there is only one instantiation of the tree | |
// class per key type. | |
using Tree = internal::TreeForMap<Key>; | |
using TreeIterator = typename Tree::iterator; | |
static Node* NodeFromTreeIterator(TreeIterator it) { | |
return static_cast<Node*>(it->second); | |
} | |
// iterator and const_iterator are instantiations of iterator_base. | |
template <typename KeyValueType> | |
class iterator_base { | |
public: | |
using reference = KeyValueType&; | |
using pointer = KeyValueType*; | |
// Invariants: | |
// node_ is always correct. This is handy because the most common | |
// operations are operator* and operator-> and they only use node_. | |
// When node_ is set to a non-null value, all the other non-const fields | |
// are updated to be correct also, but those fields can become stale | |
// if the underlying map is modified. When those fields are needed they | |
// are rechecked, and updated if necessary. | |
iterator_base() : node_(nullptr), m_(nullptr), bucket_index_(0) {} | |
explicit iterator_base(const InnerMap* m) : m_(m) { | |
SearchFrom(m->index_of_first_non_null_); | |
} | |
// Any iterator_base can convert to any other. This is overkill, and we | |
// rely on the enclosing class to use it wisely. The standard "iterator | |
// can convert to const_iterator" is OK but the reverse direction is not. | |
template <typename U> | |
explicit iterator_base(const iterator_base<U>& it) | |
: node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {} | |
iterator_base(Node* n, const InnerMap* m, size_type index) | |
: node_(n), m_(m), bucket_index_(index) {} | |
iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index) | |
: node_(NodeFromTreeIterator(tree_it)), m_(m), bucket_index_(index) { | |
// Invariant: iterators that use buckets with trees have an even | |
// bucket_index_. | |
GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u); | |
} | |
// Advance through buckets, looking for the first that isn't empty. | |
// If nothing non-empty is found then leave node_ == nullptr. | |
void SearchFrom(size_type start_bucket) { | |
GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ || | |
m_->table_[m_->index_of_first_non_null_] != nullptr); | |
node_ = nullptr; | |
for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_; | |
bucket_index_++) { | |
if (m_->TableEntryIsNonEmptyList(bucket_index_)) { | |
node_ = static_cast<Node*>(m_->table_[bucket_index_]); | |
break; | |
} else if (m_->TableEntryIsTree(bucket_index_)) { | |
Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]); | |
GOOGLE_DCHECK(!tree->empty()); | |
node_ = NodeFromTreeIterator(tree->begin()); | |
break; | |
} | |
} | |
} | |
reference operator*() const { return node_->kv; } | |
pointer operator->() const { return &(operator*()); } | |
friend bool operator==(const iterator_base& a, const iterator_base& b) { | |
return a.node_ == b.node_; | |
} | |
friend bool operator!=(const iterator_base& a, const iterator_base& b) { | |
return a.node_ != b.node_; | |
} | |
iterator_base& operator++() { | |
if (node_->next == nullptr) { | |
TreeIterator tree_it; | |
const bool is_list = revalidate_if_necessary(&tree_it); | |
if (is_list) { | |
SearchFrom(bucket_index_ + 1); | |
} else { | |
GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u); | |
Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]); | |
if (++tree_it == tree->end()) { | |
SearchFrom(bucket_index_ + 2); | |
} else { | |
node_ = NodeFromTreeIterator(tree_it); | |
} | |
} | |
} else { | |
node_ = node_->next; | |
} | |
return *this; | |
} | |
iterator_base operator++(int /* unused */) { | |
iterator_base tmp = *this; | |
++*this; | |
return tmp; | |
} | |
// Assumes node_ and m_ are correct and non-null, but other fields may be | |
// stale. Fix them as needed. Then return true iff node_ points to a | |
// Node in a list. If false is returned then *it is modified to be | |
// a valid iterator for node_. | |
bool revalidate_if_necessary(TreeIterator* it) { | |
GOOGLE_DCHECK(node_ != nullptr && m_ != nullptr); | |
// Force bucket_index_ to be in range. | |
bucket_index_ &= (m_->num_buckets_ - 1); | |
// Common case: the bucket we think is relevant points to node_. | |
if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true; | |
// Less common: the bucket is a linked list with node_ somewhere in it, | |
// but not at the head. | |
if (m_->TableEntryIsNonEmptyList(bucket_index_)) { | |
Node* l = static_cast<Node*>(m_->table_[bucket_index_]); | |
while ((l = l->next) != nullptr) { | |
if (l == node_) { | |
return true; | |
} | |
} | |
} | |
// Well, bucket_index_ still might be correct, but probably | |
// not. Revalidate just to be sure. This case is rare enough that we | |
// don't worry about potential optimizations, such as having a custom | |
// find-like method that compares Node* instead of the key. | |
iterator_base i(m_->find(node_->kv.first, it)); | |
bucket_index_ = i.bucket_index_; | |
return m_->TableEntryIsList(bucket_index_); | |
} | |
Node* node_; | |
const InnerMap* m_; | |
size_type bucket_index_; | |
}; | |
public: | |
using iterator = iterator_base<value_type>; | |
using const_iterator = iterator_base<const value_type>; | |
Arena* arena() const { return alloc_.arena(); } | |
void Swap(InnerMap* other) { | |
std::swap(num_elements_, other->num_elements_); | |
std::swap(num_buckets_, other->num_buckets_); | |
std::swap(seed_, other->seed_); | |
std::swap(index_of_first_non_null_, other->index_of_first_non_null_); | |
std::swap(table_, other->table_); | |
std::swap(alloc_, other->alloc_); | |
} | |
iterator begin() { return iterator(this); } | |
iterator end() { return iterator(); } | |
const_iterator begin() const { return const_iterator(this); } | |
const_iterator end() const { return const_iterator(); } | |
void clear() { | |
for (size_type b = 0; b < num_buckets_; b++) { | |
if (TableEntryIsNonEmptyList(b)) { | |
Node* node = static_cast<Node*>(table_[b]); | |
table_[b] = nullptr; | |
do { | |
Node* next = node->next; | |
DestroyNode(node); | |
node = next; | |
} while (node != nullptr); | |
} else if (TableEntryIsTree(b)) { | |
Tree* tree = static_cast<Tree*>(table_[b]); | |
GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0); | |
table_[b] = table_[b + 1] = nullptr; | |
typename Tree::iterator tree_it = tree->begin(); | |
do { | |
Node* node = NodeFromTreeIterator(tree_it); | |
typename Tree::iterator next = tree_it; | |
++next; | |
tree->erase(tree_it); | |
DestroyNode(node); | |
tree_it = next; | |
} while (tree_it != tree->end()); | |
DestroyTree(tree); | |
b++; | |
} | |
} | |
num_elements_ = 0; | |
index_of_first_non_null_ = num_buckets_; | |
} | |
const hasher& hash_function() const { return *this; } | |
static size_type max_size() { | |
return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28); | |
} | |
size_type size() const { return num_elements_; } | |
bool empty() const { return size() == 0; } | |
template <typename K> | |
iterator find(const K& k) { | |
return iterator(FindHelper(k).first); | |
} | |
template <typename K> | |
const_iterator find(const K& k) const { | |
return FindHelper(k).first; | |
} | |
// Insert the key into the map, if not present. In that case, the value will | |
// be value initialized. | |
template <typename K> | |
std::pair<iterator, bool> insert(K&& k) { | |
std::pair<const_iterator, size_type> p = FindHelper(k); | |
// Case 1: key was already present. | |
if (p.first.node_ != nullptr) | |
return std::make_pair(iterator(p.first), false); | |
// Case 2: insert. | |
if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) { | |
p = FindHelper(k); | |
} | |
const size_type b = p.second; // bucket number | |
Node* node; | |
// If K is not key_type, make the conversion to key_type explicit. | |
using TypeToInit = typename std::conditional< | |
std::is_same<typename std::decay<K>::type, key_type>::value, K&&, | |
key_type>::type; | |
if (alloc_.arena() == nullptr) { | |
node = new Node{value_type(static_cast<TypeToInit>(std::forward<K>(k))), | |
nullptr}; | |
} else { | |
node = Alloc<Node>(1); | |
Arena::CreateInArenaStorage( | |
const_cast<Key*>(&node->kv.first), alloc_.arena(), | |
static_cast<TypeToInit>(std::forward<K>(k))); | |
Arena::CreateInArenaStorage(&node->kv.second, alloc_.arena()); | |
} | |
iterator result = InsertUnique(b, node); | |
++num_elements_; | |
return std::make_pair(result, true); | |
} | |
template <typename K> | |
value_type& operator[](K&& k) { | |
return *insert(std::forward<K>(k)).first; | |
} | |
void erase(iterator it) { | |
GOOGLE_DCHECK_EQ(it.m_, this); | |
typename Tree::iterator tree_it; | |
const bool is_list = it.revalidate_if_necessary(&tree_it); | |
size_type b = it.bucket_index_; | |
Node* const item = it.node_; | |
if (is_list) { | |
GOOGLE_DCHECK(TableEntryIsNonEmptyList(b)); | |
Node* head = static_cast<Node*>(table_[b]); | |
head = EraseFromLinkedList(item, head); | |
table_[b] = static_cast<void*>(head); | |
} else { | |
GOOGLE_DCHECK(TableEntryIsTree(b)); | |
Tree* tree = static_cast<Tree*>(table_[b]); | |
tree->erase(tree_it); | |
if (tree->empty()) { | |
// Force b to be the minimum of b and b ^ 1. This is important | |
// only because we want index_of_first_non_null_ to be correct. | |
b &= ~static_cast<size_type>(1); | |
DestroyTree(tree); | |
table_[b] = table_[b + 1] = nullptr; | |
} | |
} | |
DestroyNode(item); | |
--num_elements_; | |
if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) { | |
while (index_of_first_non_null_ < num_buckets_ && | |
table_[index_of_first_non_null_] == nullptr) { | |
++index_of_first_non_null_; | |
} | |
} | |
} | |
size_t SpaceUsedInternal() const { | |
return internal::SpaceUsedInTable<Key>(table_, num_buckets_, | |
num_elements_, sizeof(Node)); | |
} | |
private: | |
const_iterator find(const Key& k, TreeIterator* it) const { | |
return FindHelper(k, it).first; | |
} | |
template <typename K> | |
std::pair<const_iterator, size_type> FindHelper(const K& k) const { | |
return FindHelper(k, nullptr); | |
} | |
template <typename K> | |
std::pair<const_iterator, size_type> FindHelper(const K& k, | |
TreeIterator* it) const { | |
size_type b = BucketNumber(k); | |
if (TableEntryIsNonEmptyList(b)) { | |
Node* node = static_cast<Node*>(table_[b]); | |
do { | |
if (internal::TransparentSupport<Key>::Equals(node->kv.first, k)) { | |
return std::make_pair(const_iterator(node, this, b), b); | |
} else { | |
node = node->next; | |
} | |
} while (node != nullptr); | |
} else if (TableEntryIsTree(b)) { | |
GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]); | |
b &= ~static_cast<size_t>(1); | |
Tree* tree = static_cast<Tree*>(table_[b]); | |
auto tree_it = tree->find(k); | |
if (tree_it != tree->end()) { | |
if (it != nullptr) *it = tree_it; | |
return std::make_pair(const_iterator(tree_it, this, b), b); | |
} | |
} | |
return std::make_pair(end(), b); | |
} | |
// Insert the given Node in bucket b. If that would make bucket b too big, | |
// and bucket b is not a tree, create a tree for buckets b and b^1 to share. | |
// Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct | |
// bucket. num_elements_ is not modified. | |
iterator InsertUnique(size_type b, Node* node) { | |
GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ || | |
table_[index_of_first_non_null_] != nullptr); | |
// In practice, the code that led to this point may have already | |
// determined whether we are inserting into an empty list, a short list, | |
// or whatever. But it's probably cheap enough to recompute that here; | |
// it's likely that we're inserting into an empty or short list. | |
iterator result; | |
GOOGLE_DCHECK(find(node->kv.first) == end()); | |
if (TableEntryIsEmpty(b)) { | |
result = InsertUniqueInList(b, node); | |
} else if (TableEntryIsNonEmptyList(b)) { | |
if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) { | |
TreeConvert(b); | |
result = InsertUniqueInTree(b, node); | |
GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1)); | |
} else { | |
// Insert into a pre-existing list. This case cannot modify | |
// index_of_first_non_null_, so we skip the code to update it. | |
return InsertUniqueInList(b, node); | |
} | |
} else { | |
// Insert into a pre-existing tree. This case cannot modify | |
// index_of_first_non_null_, so we skip the code to update it. | |
return InsertUniqueInTree(b, node); | |
} | |
// parentheses around (std::min) prevents macro expansion of min(...) | |
index_of_first_non_null_ = | |
(std::min)(index_of_first_non_null_, result.bucket_index_); | |
return result; | |
} | |
// Returns whether we should insert after the head of the list. For | |
// non-optimized builds, we randomly decide whether to insert right at the | |
// head of the list or just after the head. This helps add a little bit of | |
// non-determinism to the map ordering. | |
bool ShouldInsertAfterHead(void* node) { | |
(void) node; | |
return false; | |
// Doing modulo with a prime mixes the bits more. | |
return (reinterpret_cast<uintptr_t>(node) ^ seed_) % 13 > 6; | |
} | |
// Helper for InsertUnique. Handles the case where bucket b is a | |
// not-too-long linked list. | |
iterator InsertUniqueInList(size_type b, Node* node) { | |
if (table_[b] != nullptr && ShouldInsertAfterHead(node)) { | |
Node* first = static_cast<Node*>(table_[b]); | |
node->next = first->next; | |
first->next = node; | |
return iterator(node, this, b); | |
} | |
node->next = static_cast<Node*>(table_[b]); | |
table_[b] = static_cast<void*>(node); | |
return iterator(node, this, b); | |
} | |
// Helper for InsertUnique. Handles the case where bucket b points to a | |
// Tree. | |
iterator InsertUniqueInTree(size_type b, Node* node) { | |
GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]); | |
// Maintain the invariant that node->next is null for all Nodes in Trees. | |
node->next = nullptr; | |
return iterator( | |
static_cast<Tree*>(table_[b])->insert({node->kv.first, node}).first, | |
this, b & ~static_cast<size_t>(1)); | |
} | |
// Returns whether it did resize. Currently this is only used when | |
// num_elements_ increases, though it could be used in other situations. | |
// It checks for load too low as well as load too high: because any number | |
// of erases can occur between inserts, the load could be as low as 0 here. | |
// Resizing to a lower size is not always helpful, but failing to do so can | |
// destroy the expected big-O bounds for some operations. By having the | |
// policy that sometimes we resize down as well as up, clients can easily | |
// keep O(size()) = O(number of buckets) if they want that. | |
bool ResizeIfLoadIsOutOfRange(size_type new_size) { | |
const size_type kMaxMapLoadTimes16 = 12; // controls RAM vs CPU tradeoff | |
const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16; | |
const size_type lo_cutoff = hi_cutoff / 4; | |
// We don't care how many elements are in trees. If a lot are, | |
// we may resize even though there are many empty buckets. In | |
// practice, this seems fine. | |
if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) { | |
if (num_buckets_ <= max_size() / 2) { | |
Resize(num_buckets_ * 2); | |
return true; | |
} | |
} else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff && | |
num_buckets_ > kMinTableSize)) { | |
size_type lg2_of_size_reduction_factor = 1; | |
// It's possible we want to shrink a lot here... size() could even be 0. | |
// So, estimate how much to shrink by making sure we don't shrink so | |
// much that we would need to grow the table after a few inserts. | |
const size_type hypothetical_size = new_size * 5 / 4 + 1; | |
while ((hypothetical_size << lg2_of_size_reduction_factor) < | |
hi_cutoff) { | |
++lg2_of_size_reduction_factor; | |
} | |
size_type new_num_buckets = std::max<size_type>( | |
kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor); | |
if (new_num_buckets != num_buckets_) { | |
Resize(new_num_buckets); | |
return true; | |
} | |
} | |
return false; | |
} | |
// Resize to the given number of buckets. | |
void Resize(size_t new_num_buckets) { | |
if (num_buckets_ == internal::kGlobalEmptyTableSize) { | |
// This is the global empty array. | |
// Just overwrite with a new one. No need to transfer or free anything. | |
num_buckets_ = index_of_first_non_null_ = kMinTableSize; | |
table_ = CreateEmptyTable(num_buckets_); | |
seed_ = Seed(); | |
return; | |
} | |
GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize); | |
void** const old_table = table_; | |
const size_type old_table_size = num_buckets_; | |
num_buckets_ = new_num_buckets; | |
table_ = CreateEmptyTable(num_buckets_); | |
const size_type start = index_of_first_non_null_; | |
index_of_first_non_null_ = num_buckets_; | |
for (size_type i = start; i < old_table_size; i++) { | |
if (internal::TableEntryIsNonEmptyList(old_table, i)) { | |
TransferList(old_table, i); | |
} else if (internal::TableEntryIsTree(old_table, i)) { | |
TransferTree(old_table, i++); | |
} | |
} | |
Dealloc<void*>(old_table, old_table_size); | |
} | |
void TransferList(void* const* table, size_type index) { | |
Node* node = static_cast<Node*>(table[index]); | |
do { | |
Node* next = node->next; | |
InsertUnique(BucketNumber(node->kv.first), node); | |
node = next; | |
} while (node != nullptr); | |
} | |
void TransferTree(void* const* table, size_type index) { | |
Tree* tree = static_cast<Tree*>(table[index]); | |
typename Tree::iterator tree_it = tree->begin(); | |
do { | |
InsertUnique(BucketNumber(std::cref(tree_it->first).get()), | |
NodeFromTreeIterator(tree_it)); | |
} while (++tree_it != tree->end()); | |
DestroyTree(tree); | |
} | |
Node* EraseFromLinkedList(Node* item, Node* head) { | |
if (head == item) { | |
return head->next; | |
} else { | |
head->next = EraseFromLinkedList(item, head->next); | |
return head; | |
} | |
} | |
bool TableEntryIsEmpty(size_type b) const { | |
return internal::TableEntryIsEmpty(table_, b); | |
} | |
bool TableEntryIsNonEmptyList(size_type b) const { | |
return internal::TableEntryIsNonEmptyList(table_, b); | |
} | |
bool TableEntryIsTree(size_type b) const { | |
return internal::TableEntryIsTree(table_, b); | |
} | |
bool TableEntryIsList(size_type b) const { | |
return internal::TableEntryIsList(table_, b); | |
} | |
void TreeConvert(size_type b) { | |
GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1)); | |
Tree* tree = | |
Arena::Create<Tree>(alloc_.arena(), typename Tree::key_compare(), | |
typename Tree::allocator_type(alloc_)); | |
size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree); | |
GOOGLE_DCHECK_EQ(count, tree->size()); | |
table_[b] = table_[b ^ 1] = static_cast<void*>(tree); | |
} | |
// Copy a linked list in the given bucket to a tree. | |
// Returns the number of things it copied. | |
size_type CopyListToTree(size_type b, Tree* tree) { | |
size_type count = 0; | |
Node* node = static_cast<Node*>(table_[b]); | |
while (node != nullptr) { | |
tree->insert({node->kv.first, node}); | |
++count; | |
Node* next = node->next; | |
node->next = nullptr; | |
node = next; | |
} | |
return count; | |
} | |
// Return whether table_[b] is a linked list that seems awfully long. | |
// Requires table_[b] to point to a non-empty linked list. | |
bool TableEntryIsTooLong(size_type b) { | |
const size_type kMaxLength = 8; | |
size_type count = 0; | |
Node* node = static_cast<Node*>(table_[b]); | |
do { | |
++count; | |
node = node->next; | |
} while (node != nullptr); | |
// Invariant: no linked list ever is more than kMaxLength in length. | |
GOOGLE_DCHECK_LE(count, kMaxLength); | |
return count >= kMaxLength; | |
} | |
template <typename K> | |
size_type BucketNumber(const K& k) const { | |
// We xor the hash value against the random seed so that we effectively | |
// have a random hash function. | |
uint64 h = hash_function()(k) ^ seed_; | |
// We use the multiplication method to determine the bucket number from | |
// the hash value. The constant kPhi (suggested by Knuth) is roughly | |
// (sqrt(5) - 1) / 2 * 2^64. | |
constexpr uint64 kPhi = uint64{0x9e3779b97f4a7c15}; | |
return ((kPhi * h) >> 32) & (num_buckets_ - 1); | |
} | |
// Return a power of two no less than max(kMinTableSize, n). | |
// Assumes either n < kMinTableSize or n is a power of two. | |
size_type TableSize(size_type n) { | |
return n < static_cast<size_type>(kMinTableSize) | |
? static_cast<size_type>(kMinTableSize) | |
: n; | |
} | |
// Use alloc_ to allocate an array of n objects of type U. | |
template <typename U> | |
U* Alloc(size_type n) { | |
using alloc_type = typename Allocator::template rebind<U>::other; | |
return alloc_type(alloc_).allocate(n); | |
} | |
// Use alloc_ to deallocate an array of n objects of type U. | |
template <typename U> | |
void Dealloc(U* t, size_type n) { | |
using alloc_type = typename Allocator::template rebind<U>::other; | |
alloc_type(alloc_).deallocate(t, n); | |
} | |
void DestroyNode(Node* node) { | |
if (alloc_.arena() == nullptr) { | |
delete node; | |
} | |
} | |
void DestroyTree(Tree* tree) { | |
if (alloc_.arena() == nullptr) { | |
delete tree; | |
} | |
} | |
void** CreateEmptyTable(size_type n) { | |
GOOGLE_DCHECK(n >= kMinTableSize); | |
GOOGLE_DCHECK_EQ(n & (n - 1), 0); | |
void** result = Alloc<void*>(n); | |
memset(result, 0, n * sizeof(result[0])); | |
return result; | |
} | |
// Return a randomish value. | |
size_type Seed() const { | |
// We get a little bit of randomness from the address of the map. The | |
// lower bits are not very random, due to alignment, so we discard them | |
// and shift the higher bits into their place. | |
size_type s = reinterpret_cast<uintptr_t>(this) >> 12; | |
uint32 hi, lo; | |
asm volatile("rdtsc" : "=a"(lo), "=d"(hi)); | |
s += ((static_cast<uint64>(hi) << 32) | lo); | |
return s; | |
} | |
friend class Arena; | |
using InternalArenaConstructable_ = void; | |
using DestructorSkippable_ = void; | |
size_type num_elements_; | |
size_type num_buckets_; | |
size_type seed_; | |
size_type index_of_first_non_null_; | |
void** table_; // an array with num_buckets_ entries | |
Allocator alloc_; | |
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap); | |
}; // end of class InnerMap | |
template <typename LookupKey> | |
using key_arg = typename internal::TransparentSupport< | |
key_type>::template key_arg<LookupKey>; | |
public: | |
// Iterators | |
class const_iterator { | |
using InnerIt = typename InnerMap::const_iterator; | |
public: | |
using iterator_category = std::forward_iterator_tag; | |
using value_type = typename Map::value_type; | |
using difference_type = ptrdiff_t; | |
using pointer = const value_type*; | |
using reference = const value_type&; | |
const_iterator() {} | |
explicit const_iterator(const InnerIt& it) : it_(it) {} | |
const_reference operator*() const { return *it_; } | |
const_pointer operator->() const { return &(operator*()); } | |
const_iterator& operator++() { | |
++it_; | |
return *this; | |
} | |
const_iterator operator++(int) { return const_iterator(it_++); } | |
friend bool operator==(const const_iterator& a, const const_iterator& b) { | |
return a.it_ == b.it_; | |
} | |
friend bool operator!=(const const_iterator& a, const const_iterator& b) { | |
return !(a == b); | |
} | |
private: | |
InnerIt it_; | |
}; | |
class iterator { | |
using InnerIt = typename InnerMap::iterator; | |
public: | |
using iterator_category = std::forward_iterator_tag; | |
using value_type = typename Map::value_type; | |
using difference_type = ptrdiff_t; | |
using pointer = value_type*; | |
using reference = value_type&; | |
iterator() {} | |
explicit iterator(const InnerIt& it) : it_(it) {} | |
reference operator*() const { return *it_; } | |
pointer operator->() const { return &(operator*()); } | |
iterator& operator++() { | |
++it_; | |
return *this; | |
} | |
iterator operator++(int) { return iterator(it_++); } | |
// Allow implicit conversion to const_iterator. | |
operator const_iterator() const { // NOLINT(runtime/explicit) | |
return const_iterator(typename InnerMap::const_iterator(it_)); | |
} | |
friend bool operator==(const iterator& a, const iterator& b) { | |
return a.it_ == b.it_; | |
} | |
friend bool operator!=(const iterator& a, const iterator& b) { | |
return !(a == b); | |
} | |
private: | |
friend class Map; | |
InnerIt it_; | |
}; | |
iterator begin() { return iterator(elements_.begin()); } | |
iterator end() { return iterator(elements_.end()); } | |
const_iterator begin() const { return const_iterator(elements_.begin()); } | |
const_iterator end() const { return const_iterator(elements_.end()); } | |
const_iterator cbegin() const { return begin(); } | |
const_iterator cend() const { return end(); } | |
// Capacity | |
size_type size() const { return elements_.size(); } | |
bool empty() const { return size() == 0; } | |
// Element access | |
template <typename K = key_type> | |
T& operator[](const key_arg<K>& key) { | |
return elements_[key].second; | |
} | |
template < | |
typename K = key_type, | |
// Disable for integral types to reduce code bloat. | |
typename = typename std::enable_if<!std::is_integral<K>::value>::type> | |
T& operator[](key_arg<K>&& key) { | |
return elements_[std::forward<K>(key)].second; | |
} | |
template <typename K = key_type> | |
const T& at(const key_arg<K>& key) const { | |
const_iterator it = find(key); | |
GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key); | |
return it->second; | |
} | |
template <typename K = key_type> | |
T& at(const key_arg<K>& key) { | |
iterator it = find(key); | |
GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key); | |
return it->second; | |
} | |
// Lookup | |
template <typename K = key_type> | |
size_type count(const key_arg<K>& key) const { | |
return find(key) == end() ? 0 : 1; | |
} | |
template <typename K = key_type> | |
const_iterator find(const key_arg<K>& key) const { | |
return const_iterator(elements_.find(key)); | |
} | |
template <typename K = key_type> | |
iterator find(const key_arg<K>& key) { | |
return iterator(elements_.find(key)); | |
} | |
template <typename K = key_type> | |
bool contains(const key_arg<K>& key) const { | |
return find(key) != end(); | |
} | |
template <typename K = key_type> | |
std::pair<const_iterator, const_iterator> equal_range( | |
const key_arg<K>& key) const { | |
const_iterator it = find(key); | |
if (it == end()) { | |
return std::pair<const_iterator, const_iterator>(it, it); | |
} else { | |
const_iterator begin = it++; | |
return std::pair<const_iterator, const_iterator>(begin, it); | |
} | |
} | |
template <typename K = key_type> | |
std::pair<iterator, iterator> equal_range(const key_arg<K>& key) { | |
iterator it = find(key); | |
if (it == end()) { | |
return std::pair<iterator, iterator>(it, it); | |
} else { | |
iterator begin = it++; | |
return std::pair<iterator, iterator>(begin, it); | |
} | |
} | |
// insert | |
std::pair<iterator, bool> insert(const value_type& value) { | |
std::pair<typename InnerMap::iterator, bool> p = | |
elements_.insert(value.first); | |
if (p.second) { | |
p.first->second = value.second; | |
} | |
return std::pair<iterator, bool>(iterator(p.first), p.second); | |
} | |
template <class InputIt> | |
void insert(InputIt first, InputIt last) { | |
for (InputIt it = first; it != last; ++it) { | |
iterator exist_it = find(it->first); | |
if (exist_it == end()) { | |
operator[](it->first) = it->second; | |
} | |
} | |
} | |
void insert(std::initializer_list<value_type> values) { | |
insert(values.begin(), values.end()); | |
} | |
// Erase and clear | |
template <typename K = key_type> | |
size_type erase(const key_arg<K>& key) { | |
iterator it = find(key); | |
if (it == end()) { | |
return 0; | |
} else { | |
erase(it); | |
return 1; | |
} | |
} | |
iterator erase(iterator pos) { | |
iterator i = pos++; | |
elements_.erase(i.it_); | |
return pos; | |
} | |
void erase(iterator first, iterator last) { | |
while (first != last) { | |
first = erase(first); | |
} | |
} | |
void clear() { elements_.clear(); } | |
// Assign | |
Map& operator=(const Map& other) { | |
if (this != &other) { | |
clear(); | |
insert(other.begin(), other.end()); | |
} | |
return *this; | |
} | |
void swap(Map& other) { | |
if (arena() == other.arena()) { | |
elements_.Swap(&other.elements_); | |
} else { | |
// TODO(zuguang): optimize this. The temporary copy can be allocated | |
// in the same arena as the other message, and the "other = copy" can | |
// be replaced with the fast-path swap above. | |
Map copy = *this; | |
*this = other; | |
other = copy; | |
} | |
} | |
// Access to hasher. Currently this returns a copy, but it may | |
// be modified to return a const reference in the future. | |
hasher hash_function() const { return elements_.hash_function(); } | |
size_t SpaceUsedExcludingSelfLong() const { | |
if (empty()) return 0; | |
return elements_.SpaceUsedInternal() + internal::SpaceUsedInValues(this); | |
} | |
private: | |
Arena* arena() const { return elements_.arena(); } | |
InnerMap elements_; | |
friend class Arena; | |
using InternalArenaConstructable_ = void; | |
using DestructorSkippable_ = void; | |
template <typename Derived, typename K, typename V, | |
internal::WireFormatLite::FieldType key_wire_type, | |
internal::WireFormatLite::FieldType value_wire_type> | |
friend class internal::MapFieldLite; | |
}; | |
} // namespace protobuf | |
} // namespace google | |