File size: 8,223 Bytes
988f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c8a4a7
988f0c4
50c9a05
988f0c4
50c9a05
988f0c4
 
 
 
50c9a05
0635cb1
988f0c4
 
 
 
 
 
 
 
 
 
 
 
2c8a4a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b84d6
2c8a4a7
988f0c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import logging
import re
from threading import Thread
from typing import List, Optional
import os
import torch
from transformers import (
    AutoModel,
    AutoProcessor,
    AutoConfig,
    StoppingCriteria,
    StoppingCriteriaList,
    TextIteratorStreamer,
)

from .chat_utils import Conversation, get_conv_template

logger = logging.getLogger(__name__)


def load_model_from_nv(model_path: str = "nvidia/Eagle-2.5-8B"):

    token = os.environ.get("HF_TOKEN")
    # hotfix the model to use flash attention 2
    config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, use_auth_token=token)
    config._attn_implementation = "flash_attention_2"
    config.vision_config._attn_implementation = "flash_attention_2"
    config.text_config._attn_implementation = "flash_attention_2"
    print("Successfully set the attn_implementation to flash_attention_2")

    logger.info(f"token = {token[:4]}***{token[-2:]}")
    model = AutoModel.from_pretrained(
        model_path,
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
        attn_implementation="flash_attention_2",
        use_auth_token=token
    )
    model.to("cuda")
    processor = AutoProcessor.from_pretrained(model_path, config=config, trust_remote_code=True, use_fast=True, use_auth_token=token)

    return model, processor

def load_model_from_eagle(model_path: str = "NVEagle/Eagle2.5-VL-8B-Preview"):

    token = os.environ.get("HF_TOKEN")
    # hotfix the model to use flash attention 2
    config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, use_auth_token=token)
    config._attn_implementation = "flash_attention_2"
    config.vision_config._attn_implementation = "flash_attention_2"
    config.text_config._attn_implementation = "flash_attention_2"
    print("Successfully set the attn_implementation to flash_attention_2")

    logger.info(f"token = {token[:4]}***{token[-2:]}")
    model = AutoModel.from_pretrained(
        model_path,
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
        attn_implementation="flash_attention_2",
        use_auth_token=token
    )
    model.to("cuda")
    processor = AutoProcessor.from_pretrained(model_path, config=config, trust_remote_code=True, use_fast=True, use_auth_token=token)

    return model, processor

def load_model(model_path: str = "nvidia/Eagle-2.5-8B"):
    try:
        model, processor = load_model_from_nv(model_path)
    except Exception as e:
        logger.error(f"Failed to load model from HF, trying to load from eagle: {e}")
        model, processor = load_model_from_eagle()
    return model, processor

class StoppingCriteriaSub(StoppingCriteria):
    def __init__(self, stops=[], encounters=1):
        super().__init__()
        self.stops = [stop.to("cuda") for stop in stops]

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
        for stop in self.stops:
            if input_ids.shape[-1] < len(stop):
                continue
            if torch.all((stop == input_ids[0][-len(stop) :])).item():
                return True

        return False


def preprocess(
    messages: list[dict],
    processor,
):
    """
    Build messages from the conversations and images.
    """
    # get images from conversations
    results = []
    # get texts from conversations
    # converstion = get_conv_template(sft_format)
    # only use the last 3 round of messages
    # latest_messages = messages[-3:]
    for mid, message in enumerate(messages):
        if message["role"] == "user":
            record = {
                "role": message["role"],
                "content": [],
            }
            if "images" in message:
                per_round_images = message["images"]
                for image in per_round_images:
                    record["content"].append(
                        {
                            "type": "image",
                            "image": image,
                        }
                    )
            if 'content' in message:
                record["content"].append(
                    {
                        "type": "text",
                        "text": str(message["content"]).strip(),
                    }
                )
            results.append(record)
        elif message["role"] == "assistant":
            formatted_answer = message["content"].strip()
            # ◁think▷用户说了“你好”,这是一个非常简单的问候,通常用于开启对话。我需要判断用户的意图。可能性一:用户只是礼貌性地打招呼,想要开启一段对话;可能性二:用户可能有更具体的需求,比如询问我的功能、功能或者需要帮助。由于用户没有提供更多信息,我需要保持开放,同时引导用户进一步说明他们的需求。
            # 我的回复需要既友好又开放,不能显得过于正式或冷漠。同时,我需要避免假设用户的具体需求,而是提供一个轻松的、鼓励继续对话的回应。◁/think▷你好!很高兴见到你。有什么我可以帮助你的吗
            # delete all the texts between ◁think▷ and ◁/think▷
            # FIXME: this is a hack to remove the thinking texts
            # formatted_answer = re.sub(r"◁think▷.*◁/think▷", "", formatted_answer)
            think_end_token = '◁/think▷'
            formatted_answer = formatted_answer.split(think_end_token)[-1]
            results.append(
                {
                    "role": message["role"],
                    "content": [
                        {
                            "type": "text",
                            "text": formatted_answer,
                        }
                    ],
                }
            )
            assert (
                formatted_answer.count(processor.image_token) == 0
            ), f"there should be no {processor.image_token} in the assistant's reply, but got {messages}"
            
    print(f"messages = {results}")
    text = processor.apply_chat_template(results, add_generation_prompt=False)
    print(f"raw text = {text}")
    
    image_inputs, video_inputs = processor.process_vision_info(results)

    inputs = processor(
        images=image_inputs,
        videos=video_inputs,
        text=[text],
        return_tensors="pt",
        padding=True,
        truncation=True,
    )
    return inputs


@torch.no_grad()
@torch.inference_mode()
def eagle_vl_generate(
    model: torch.nn.Module,
    processor: AutoProcessor,
    conversations: list[Conversation],
    stop_words: list,
    max_length: int = 256,
    temperature: float = 1.0,
    top_p: float = 1.0,
    chunk_size: int = -1,
):
    # convert conversation to inputs
    print(f"conversations = {conversations}")
    inputs = preprocess(conversations, processor=processor)
    inputs = inputs.to(model.device)

    return generate(
        model,
        processor,
        inputs,
        max_gen_len=max_length,
        temperature=temperature,
        top_p=top_p,
        stop_words=stop_words,
        chunk_size=chunk_size,
    )


def generate(
    model,
    processor,
    inputs,
    max_gen_len: int = 256,
    temperature: float = 0,
    top_p: float = 0.95,
    stop_words: List[str] = [],
    chunk_size: int = -1,
):
    """Stream the text output from the multimodality model with prompt and image inputs."""
    tokenizer = processor.tokenizer
    stop_words_ids = [torch.tensor(tokenizer.encode(stop_word)) for stop_word in stop_words]
    stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)

    kwargs = dict(
        **inputs,
        max_new_tokens=max_gen_len,
        do_sample=True,
        streamer=streamer,
        stopping_criteria=stopping_criteria,
    )

    if temperature > 0:
        kwargs.update(
            {
                "do_sample": True,
                "top_p": top_p,
                "temperature": temperature,
            }
        )
    else:
        kwargs["do_sample"] = False

    thread = Thread(target=model.generate, kwargs=kwargs)
    thread.start()

    yield from streamer