import argparse import pathlib from typing import Any, Dict, Tuple import torch from accelerate import init_empty_weights from huggingface_hub import hf_hub_download, snapshot_download from safetensors.torch import load_file from transformers import AutoProcessor, AutoTokenizer, CLIPVisionModelWithProjection, UMT5EncoderModel from diffusers import ( AutoencoderKLWan, UniPCMultistepScheduler, WanImageToVideoPipeline, WanPipeline, WanTransformer3DModel, WanVACEPipeline, WanVACETransformer3DModel, ) TRANSFORMER_KEYS_RENAME_DICT = { "time_embedding.0": "condition_embedder.time_embedder.linear_1", "time_embedding.2": "condition_embedder.time_embedder.linear_2", "text_embedding.0": "condition_embedder.text_embedder.linear_1", "text_embedding.2": "condition_embedder.text_embedder.linear_2", "time_projection.1": "condition_embedder.time_proj", "head.modulation": "scale_shift_table", "head.head": "proj_out", "modulation": "scale_shift_table", "ffn.0": "ffn.net.0.proj", "ffn.2": "ffn.net.2", # Hack to swap the layer names # The original model calls the norms in following order: norm1, norm3, norm2 # We convert it to: norm1, norm2, norm3 "norm2": "norm__placeholder", "norm3": "norm2", "norm__placeholder": "norm3", # For the I2V model "img_emb.proj.0": "condition_embedder.image_embedder.norm1", "img_emb.proj.1": "condition_embedder.image_embedder.ff.net.0.proj", "img_emb.proj.3": "condition_embedder.image_embedder.ff.net.2", "img_emb.proj.4": "condition_embedder.image_embedder.norm2", # for the FLF2V model "img_emb.emb_pos": "condition_embedder.image_embedder.pos_embed", # Add attention component mappings "self_attn.q": "attn1.to_q", "self_attn.k": "attn1.to_k", "self_attn.v": "attn1.to_v", "self_attn.o": "attn1.to_out.0", "self_attn.norm_q": "attn1.norm_q", "self_attn.norm_k": "attn1.norm_k", "cross_attn.q": "attn2.to_q", "cross_attn.k": "attn2.to_k", "cross_attn.v": "attn2.to_v", "cross_attn.o": "attn2.to_out.0", "cross_attn.norm_q": "attn2.norm_q", "cross_attn.norm_k": "attn2.norm_k", "attn2.to_k_img": "attn2.add_k_proj", "attn2.to_v_img": "attn2.add_v_proj", "attn2.norm_k_img": "attn2.norm_added_k", } VACE_TRANSFORMER_KEYS_RENAME_DICT = { "time_embedding.0": "condition_embedder.time_embedder.linear_1", "time_embedding.2": "condition_embedder.time_embedder.linear_2", "text_embedding.0": "condition_embedder.text_embedder.linear_1", "text_embedding.2": "condition_embedder.text_embedder.linear_2", "time_projection.1": "condition_embedder.time_proj", "head.modulation": "scale_shift_table", "head.head": "proj_out", "modulation": "scale_shift_table", "ffn.0": "ffn.net.0.proj", "ffn.2": "ffn.net.2", # Hack to swap the layer names # The original model calls the norms in following order: norm1, norm3, norm2 # We convert it to: norm1, norm2, norm3 "norm2": "norm__placeholder", "norm3": "norm2", "norm__placeholder": "norm3", # # For the I2V model # "img_emb.proj.0": "condition_embedder.image_embedder.norm1", # "img_emb.proj.1": "condition_embedder.image_embedder.ff.net.0.proj", # "img_emb.proj.3": "condition_embedder.image_embedder.ff.net.2", # "img_emb.proj.4": "condition_embedder.image_embedder.norm2", # # for the FLF2V model # "img_emb.emb_pos": "condition_embedder.image_embedder.pos_embed", # Add attention component mappings "self_attn.q": "attn1.to_q", "self_attn.k": "attn1.to_k", "self_attn.v": "attn1.to_v", "self_attn.o": "attn1.to_out.0", "self_attn.norm_q": "attn1.norm_q", "self_attn.norm_k": "attn1.norm_k", "cross_attn.q": "attn2.to_q", "cross_attn.k": "attn2.to_k", "cross_attn.v": "attn2.to_v", "cross_attn.o": "attn2.to_out.0", "cross_attn.norm_q": "attn2.norm_q", "cross_attn.norm_k": "attn2.norm_k", "attn2.to_k_img": "attn2.add_k_proj", "attn2.to_v_img": "attn2.add_v_proj", "attn2.norm_k_img": "attn2.norm_added_k", "before_proj": "proj_in", "after_proj": "proj_out", } TRANSFORMER_SPECIAL_KEYS_REMAP = {} VACE_TRANSFORMER_SPECIAL_KEYS_REMAP = {} def update_state_dict_(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]: state_dict[new_key] = state_dict.pop(old_key) def load_sharded_safetensors(dir: pathlib.Path): file_paths = list(dir.glob("diffusion_pytorch_model*.safetensors")) state_dict = {} for path in file_paths: state_dict.update(load_file(path)) return state_dict def get_transformer_config(model_type: str) -> Tuple[Dict[str, Any], ...]: if model_type == "Wan-T2V-1.3B": config = { "model_id": "StevenZhang/Wan2.1-T2V-1.3B-Diff", "diffusers_config": { "added_kv_proj_dim": None, "attention_head_dim": 128, "cross_attn_norm": True, "eps": 1e-06, "ffn_dim": 8960, "freq_dim": 256, "in_channels": 16, "num_attention_heads": 12, "num_layers": 30, "out_channels": 16, "patch_size": [1, 2, 2], "qk_norm": "rms_norm_across_heads", "text_dim": 4096, }, } RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP elif model_type == "Wan-T2V-14B": config = { "model_id": "StevenZhang/Wan2.1-T2V-14B-Diff", "diffusers_config": { "added_kv_proj_dim": None, "attention_head_dim": 128, "cross_attn_norm": True, "eps": 1e-06, "ffn_dim": 13824, "freq_dim": 256, "in_channels": 16, "num_attention_heads": 40, "num_layers": 40, "out_channels": 16, "patch_size": [1, 2, 2], "qk_norm": "rms_norm_across_heads", "text_dim": 4096, }, } RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP elif model_type == "Wan-I2V-14B-480p": config = { "model_id": "StevenZhang/Wan2.1-I2V-14B-480P-Diff", "diffusers_config": { "image_dim": 1280, "added_kv_proj_dim": 5120, "attention_head_dim": 128, "cross_attn_norm": True, "eps": 1e-06, "ffn_dim": 13824, "freq_dim": 256, "in_channels": 36, "num_attention_heads": 40, "num_layers": 40, "out_channels": 16, "patch_size": [1, 2, 2], "qk_norm": "rms_norm_across_heads", "text_dim": 4096, }, } RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP elif model_type == "Wan-I2V-14B-720p": config = { "model_id": "StevenZhang/Wan2.1-I2V-14B-720P-Diff", "diffusers_config": { "image_dim": 1280, "added_kv_proj_dim": 5120, "attention_head_dim": 128, "cross_attn_norm": True, "eps": 1e-06, "ffn_dim": 13824, "freq_dim": 256, "in_channels": 36, "num_attention_heads": 40, "num_layers": 40, "out_channels": 16, "patch_size": [1, 2, 2], "qk_norm": "rms_norm_across_heads", "text_dim": 4096, }, } RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP elif model_type == "Wan-FLF2V-14B-720P": config = { "model_id": "ypyp/Wan2.1-FLF2V-14B-720P", # This is just a placeholder "diffusers_config": { "image_dim": 1280, "added_kv_proj_dim": 5120, "attention_head_dim": 128, "cross_attn_norm": True, "eps": 1e-06, "ffn_dim": 13824, "freq_dim": 256, "in_channels": 36, "num_attention_heads": 40, "num_layers": 40, "out_channels": 16, "patch_size": [1, 2, 2], "qk_norm": "rms_norm_across_heads", "text_dim": 4096, "rope_max_seq_len": 1024, "pos_embed_seq_len": 257 * 2, }, } RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP elif model_type == "Wan-VACE-1.3B": config = { "model_id": "Wan-AI/Wan2.1-VACE-1.3B", "diffusers_config": { "added_kv_proj_dim": None, "attention_head_dim": 128, "cross_attn_norm": True, "eps": 1e-06, "ffn_dim": 8960, "freq_dim": 256, "in_channels": 16, "num_attention_heads": 12, "num_layers": 30, "out_channels": 16, "patch_size": [1, 2, 2], "qk_norm": "rms_norm_across_heads", "text_dim": 4096, "vace_layers": [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28], "vace_in_channels": 96, }, } RENAME_DICT = VACE_TRANSFORMER_KEYS_RENAME_DICT SPECIAL_KEYS_REMAP = VACE_TRANSFORMER_SPECIAL_KEYS_REMAP elif model_type == "Wan-VACE-14B": config = { "model_id": "Wan-AI/Wan2.1-VACE-14B", "diffusers_config": { "added_kv_proj_dim": None, "attention_head_dim": 128, "cross_attn_norm": True, "eps": 1e-06, "ffn_dim": 13824, "freq_dim": 256, "in_channels": 16, "num_attention_heads": 40, "num_layers": 40, "out_channels": 16, "patch_size": [1, 2, 2], "qk_norm": "rms_norm_across_heads", "text_dim": 4096, "vace_layers": [0, 5, 10, 15, 20, 25, 30, 35], "vace_in_channels": 96, }, } RENAME_DICT = VACE_TRANSFORMER_KEYS_RENAME_DICT SPECIAL_KEYS_REMAP = VACE_TRANSFORMER_SPECIAL_KEYS_REMAP return config, RENAME_DICT, SPECIAL_KEYS_REMAP def convert_transformer(model_type: str): config, RENAME_DICT, SPECIAL_KEYS_REMAP = get_transformer_config(model_type) diffusers_config = config["diffusers_config"] model_id = config["model_id"] model_dir = pathlib.Path(snapshot_download(model_id, repo_type="model")) original_state_dict = load_sharded_safetensors(model_dir) with init_empty_weights(): if "VACE" not in model_type: transformer = WanTransformer3DModel.from_config(diffusers_config) else: transformer = WanVACETransformer3DModel.from_config(diffusers_config) for key in list(original_state_dict.keys()): new_key = key[:] for replace_key, rename_key in RENAME_DICT.items(): new_key = new_key.replace(replace_key, rename_key) update_state_dict_(original_state_dict, key, new_key) for key in list(original_state_dict.keys()): for special_key, handler_fn_inplace in SPECIAL_KEYS_REMAP.items(): if special_key not in key: continue handler_fn_inplace(key, original_state_dict) transformer.load_state_dict(original_state_dict, strict=True, assign=True) return transformer def convert_vae(): vae_ckpt_path = hf_hub_download("Wan-AI/Wan2.1-T2V-14B", "Wan2.1_VAE.pth") old_state_dict = torch.load(vae_ckpt_path, weights_only=True) new_state_dict = {} # Create mappings for specific components middle_key_mapping = { # Encoder middle block "encoder.middle.0.residual.0.gamma": "encoder.mid_block.resnets.0.norm1.gamma", "encoder.middle.0.residual.2.bias": "encoder.mid_block.resnets.0.conv1.bias", "encoder.middle.0.residual.2.weight": "encoder.mid_block.resnets.0.conv1.weight", "encoder.middle.0.residual.3.gamma": "encoder.mid_block.resnets.0.norm2.gamma", "encoder.middle.0.residual.6.bias": "encoder.mid_block.resnets.0.conv2.bias", "encoder.middle.0.residual.6.weight": "encoder.mid_block.resnets.0.conv2.weight", "encoder.middle.2.residual.0.gamma": "encoder.mid_block.resnets.1.norm1.gamma", "encoder.middle.2.residual.2.bias": "encoder.mid_block.resnets.1.conv1.bias", "encoder.middle.2.residual.2.weight": "encoder.mid_block.resnets.1.conv1.weight", "encoder.middle.2.residual.3.gamma": "encoder.mid_block.resnets.1.norm2.gamma", "encoder.middle.2.residual.6.bias": "encoder.mid_block.resnets.1.conv2.bias", "encoder.middle.2.residual.6.weight": "encoder.mid_block.resnets.1.conv2.weight", # Decoder middle block "decoder.middle.0.residual.0.gamma": "decoder.mid_block.resnets.0.norm1.gamma", "decoder.middle.0.residual.2.bias": "decoder.mid_block.resnets.0.conv1.bias", "decoder.middle.0.residual.2.weight": "decoder.mid_block.resnets.0.conv1.weight", "decoder.middle.0.residual.3.gamma": "decoder.mid_block.resnets.0.norm2.gamma", "decoder.middle.0.residual.6.bias": "decoder.mid_block.resnets.0.conv2.bias", "decoder.middle.0.residual.6.weight": "decoder.mid_block.resnets.0.conv2.weight", "decoder.middle.2.residual.0.gamma": "decoder.mid_block.resnets.1.norm1.gamma", "decoder.middle.2.residual.2.bias": "decoder.mid_block.resnets.1.conv1.bias", "decoder.middle.2.residual.2.weight": "decoder.mid_block.resnets.1.conv1.weight", "decoder.middle.2.residual.3.gamma": "decoder.mid_block.resnets.1.norm2.gamma", "decoder.middle.2.residual.6.bias": "decoder.mid_block.resnets.1.conv2.bias", "decoder.middle.2.residual.6.weight": "decoder.mid_block.resnets.1.conv2.weight", } # Create a mapping for attention blocks attention_mapping = { # Encoder middle attention "encoder.middle.1.norm.gamma": "encoder.mid_block.attentions.0.norm.gamma", "encoder.middle.1.to_qkv.weight": "encoder.mid_block.attentions.0.to_qkv.weight", "encoder.middle.1.to_qkv.bias": "encoder.mid_block.attentions.0.to_qkv.bias", "encoder.middle.1.proj.weight": "encoder.mid_block.attentions.0.proj.weight", "encoder.middle.1.proj.bias": "encoder.mid_block.attentions.0.proj.bias", # Decoder middle attention "decoder.middle.1.norm.gamma": "decoder.mid_block.attentions.0.norm.gamma", "decoder.middle.1.to_qkv.weight": "decoder.mid_block.attentions.0.to_qkv.weight", "decoder.middle.1.to_qkv.bias": "decoder.mid_block.attentions.0.to_qkv.bias", "decoder.middle.1.proj.weight": "decoder.mid_block.attentions.0.proj.weight", "decoder.middle.1.proj.bias": "decoder.mid_block.attentions.0.proj.bias", } # Create a mapping for the head components head_mapping = { # Encoder head "encoder.head.0.gamma": "encoder.norm_out.gamma", "encoder.head.2.bias": "encoder.conv_out.bias", "encoder.head.2.weight": "encoder.conv_out.weight", # Decoder head "decoder.head.0.gamma": "decoder.norm_out.gamma", "decoder.head.2.bias": "decoder.conv_out.bias", "decoder.head.2.weight": "decoder.conv_out.weight", } # Create a mapping for the quant components quant_mapping = { "conv1.weight": "quant_conv.weight", "conv1.bias": "quant_conv.bias", "conv2.weight": "post_quant_conv.weight", "conv2.bias": "post_quant_conv.bias", } # Process each key in the state dict for key, value in old_state_dict.items(): # Handle middle block keys using the mapping if key in middle_key_mapping: new_key = middle_key_mapping[key] new_state_dict[new_key] = value # Handle attention blocks using the mapping elif key in attention_mapping: new_key = attention_mapping[key] new_state_dict[new_key] = value # Handle head keys using the mapping elif key in head_mapping: new_key = head_mapping[key] new_state_dict[new_key] = value # Handle quant keys using the mapping elif key in quant_mapping: new_key = quant_mapping[key] new_state_dict[new_key] = value # Handle encoder conv1 elif key == "encoder.conv1.weight": new_state_dict["encoder.conv_in.weight"] = value elif key == "encoder.conv1.bias": new_state_dict["encoder.conv_in.bias"] = value # Handle decoder conv1 elif key == "decoder.conv1.weight": new_state_dict["decoder.conv_in.weight"] = value elif key == "decoder.conv1.bias": new_state_dict["decoder.conv_in.bias"] = value # Handle encoder downsamples elif key.startswith("encoder.downsamples."): # Convert to down_blocks new_key = key.replace("encoder.downsamples.", "encoder.down_blocks.") # Convert residual block naming but keep the original structure if ".residual.0.gamma" in new_key: new_key = new_key.replace(".residual.0.gamma", ".norm1.gamma") elif ".residual.2.bias" in new_key: new_key = new_key.replace(".residual.2.bias", ".conv1.bias") elif ".residual.2.weight" in new_key: new_key = new_key.replace(".residual.2.weight", ".conv1.weight") elif ".residual.3.gamma" in new_key: new_key = new_key.replace(".residual.3.gamma", ".norm2.gamma") elif ".residual.6.bias" in new_key: new_key = new_key.replace(".residual.6.bias", ".conv2.bias") elif ".residual.6.weight" in new_key: new_key = new_key.replace(".residual.6.weight", ".conv2.weight") elif ".shortcut.bias" in new_key: new_key = new_key.replace(".shortcut.bias", ".conv_shortcut.bias") elif ".shortcut.weight" in new_key: new_key = new_key.replace(".shortcut.weight", ".conv_shortcut.weight") new_state_dict[new_key] = value # Handle decoder upsamples elif key.startswith("decoder.upsamples."): # Convert to up_blocks parts = key.split(".") block_idx = int(parts[2]) # Group residual blocks if "residual" in key: if block_idx in [0, 1, 2]: new_block_idx = 0 resnet_idx = block_idx elif block_idx in [4, 5, 6]: new_block_idx = 1 resnet_idx = block_idx - 4 elif block_idx in [8, 9, 10]: new_block_idx = 2 resnet_idx = block_idx - 8 elif block_idx in [12, 13, 14]: new_block_idx = 3 resnet_idx = block_idx - 12 else: # Keep as is for other blocks new_state_dict[key] = value continue # Convert residual block naming if ".residual.0.gamma" in key: new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.norm1.gamma" elif ".residual.2.bias" in key: new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv1.bias" elif ".residual.2.weight" in key: new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv1.weight" elif ".residual.3.gamma" in key: new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.norm2.gamma" elif ".residual.6.bias" in key: new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv2.bias" elif ".residual.6.weight" in key: new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv2.weight" else: new_key = key new_state_dict[new_key] = value # Handle shortcut connections elif ".shortcut." in key: if block_idx == 4: new_key = key.replace(".shortcut.", ".resnets.0.conv_shortcut.") new_key = new_key.replace("decoder.upsamples.4", "decoder.up_blocks.1") else: new_key = key.replace("decoder.upsamples.", "decoder.up_blocks.") new_key = new_key.replace(".shortcut.", ".conv_shortcut.") new_state_dict[new_key] = value # Handle upsamplers elif ".resample." in key or ".time_conv." in key: if block_idx == 3: new_key = key.replace(f"decoder.upsamples.{block_idx}", "decoder.up_blocks.0.upsamplers.0") elif block_idx == 7: new_key = key.replace(f"decoder.upsamples.{block_idx}", "decoder.up_blocks.1.upsamplers.0") elif block_idx == 11: new_key = key.replace(f"decoder.upsamples.{block_idx}", "decoder.up_blocks.2.upsamplers.0") else: new_key = key.replace("decoder.upsamples.", "decoder.up_blocks.") new_state_dict[new_key] = value else: new_key = key.replace("decoder.upsamples.", "decoder.up_blocks.") new_state_dict[new_key] = value else: # Keep other keys unchanged new_state_dict[key] = value with init_empty_weights(): vae = AutoencoderKLWan() vae.load_state_dict(new_state_dict, strict=True, assign=True) return vae def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_type", type=str, default=None) parser.add_argument("--output_path", type=str, required=True) parser.add_argument("--dtype", default="fp32", choices=["fp32", "fp16", "bf16", "none"]) return parser.parse_args() DTYPE_MAPPING = { "fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16, } if __name__ == "__main__": args = get_args() transformer = convert_transformer(args.model_type) vae = convert_vae() text_encoder = UMT5EncoderModel.from_pretrained("google/umt5-xxl", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained("google/umt5-xxl") flow_shift = 16.0 if "FLF2V" in args.model_type else 3.0 scheduler = UniPCMultistepScheduler( prediction_type="flow_prediction", use_flow_sigmas=True, num_train_timesteps=1000, flow_shift=flow_shift ) # If user has specified "none", we keep the original dtypes of the state dict without any conversion if args.dtype != "none": dtype = DTYPE_MAPPING[args.dtype] transformer.to(dtype) if "I2V" in args.model_type or "FLF2V" in args.model_type: image_encoder = CLIPVisionModelWithProjection.from_pretrained( "laion/CLIP-ViT-H-14-laion2B-s32B-b79K", torch_dtype=torch.bfloat16 ) image_processor = AutoProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") pipe = WanImageToVideoPipeline( transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, vae=vae, scheduler=scheduler, image_encoder=image_encoder, image_processor=image_processor, ) elif "VACE" in args.model_type: pipe = WanVACEPipeline( transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, vae=vae, scheduler=scheduler, ) else: pipe = WanPipeline( transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, vae=vae, scheduler=scheduler, ) pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB")