# Copyright 2025 VisualCloze team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional, Tuple, Union import torch from PIL import Image from ...image_processor import VaeImageProcessor class VisualClozeProcessor(VaeImageProcessor): """ Image processor for the VisualCloze pipeline. This processor handles the preprocessing of images for visual cloze tasks, including resizing, normalization, and mask generation. Args: resolution (int, optional): Target resolution for processing images. Each image will be resized to this resolution before being concatenated to avoid the out-of-memory error. Defaults to 384. *args: Additional arguments passed to [~image_processor.VaeImageProcessor] **kwargs: Additional keyword arguments passed to [~image_processor.VaeImageProcessor] """ def __init__(self, *args, resolution: int = 384, **kwargs): super().__init__(*args, **kwargs) self.resolution = resolution def preprocess_image( self, input_images: List[List[Optional[Image.Image]]], vae_scale_factor: int ) -> Tuple[List[List[torch.Tensor]], List[List[List[int]]], List[int]]: """ Preprocesses input images for the VisualCloze pipeline. This function handles the preprocessing of input images by: 1. Resizing and cropping images to maintain consistent dimensions 2. Converting images to the Tensor format for the VAE 3. Normalizing pixel values 4. Tracking image sizes and positions of target images Args: input_images (List[List[Optional[Image.Image]]]): A nested list of PIL Images where: - Outer list represents different samples, including in-context examples and the query - Inner list contains images for the task - In the last row, condition images are provided and the target images are placed as None vae_scale_factor (int): The scale factor used by the VAE for resizing images Returns: Tuple containing: - List[List[torch.Tensor]]: Preprocessed images in tensor format - List[List[List[int]]]: Dimensions of each processed image [height, width] - List[int]: Target positions indicating which images are to be generated """ n_samples, n_task_images = len(input_images), len(input_images[0]) divisible = 2 * vae_scale_factor processed_images: List[List[Image.Image]] = [[] for _ in range(n_samples)] resize_size: List[Optional[Tuple[int, int]]] = [None for _ in range(n_samples)] target_position: List[int] = [] # Process each sample for i in range(n_samples): # Determine size from first non-None image for j in range(n_task_images): if input_images[i][j] is not None: aspect_ratio = input_images[i][j].width / input_images[i][j].height target_area = self.resolution * self.resolution new_h = int((target_area / aspect_ratio) ** 0.5) new_w = int(new_h * aspect_ratio) new_w = max(new_w // divisible, 1) * divisible new_h = max(new_h // divisible, 1) * divisible resize_size[i] = (new_w, new_h) break # Process all images in the sample for j in range(n_task_images): if input_images[i][j] is not None: target = self._resize_and_crop(input_images[i][j], resize_size[i][0], resize_size[i][1]) processed_images[i].append(target) if i == n_samples - 1: target_position.append(0) else: blank = Image.new("RGB", resize_size[i] or (self.resolution, self.resolution), (0, 0, 0)) processed_images[i].append(blank) if i == n_samples - 1: target_position.append(1) # Ensure consistent width for multiple target images when there are multiple target images if len(target_position) > 1 and sum(target_position) > 1: new_w = resize_size[n_samples - 1][0] or 384 for i in range(len(processed_images)): for j in range(len(processed_images[i])): if processed_images[i][j] is not None: new_h = int(processed_images[i][j].height * (new_w / processed_images[i][j].width)) new_w = int(new_w / 16) * 16 new_h = int(new_h / 16) * 16 processed_images[i][j] = self.height(processed_images[i][j], new_h, new_w) # Convert to tensors and normalize image_sizes = [] for i in range(len(processed_images)): image_sizes.append([[img.height, img.width] for img in processed_images[i]]) for j, image in enumerate(processed_images[i]): image = self.pil_to_numpy(image) image = self.numpy_to_pt(image) image = self.normalize(image) processed_images[i][j] = image return processed_images, image_sizes, target_position def preprocess_mask( self, input_images: List[List[Image.Image]], target_position: List[int] ) -> List[List[torch.Tensor]]: """ Generate masks for the VisualCloze pipeline. Args: input_images (List[List[Image.Image]]): Processed images from preprocess_image target_position (List[int]): Binary list marking the positions of target images (1 for target, 0 for condition) Returns: List[List[torch.Tensor]]: A nested list of mask tensors (1 for target positions, 0 for condition images) """ mask = [] for i, row in enumerate(input_images): if i == len(input_images) - 1: # Query row row_masks = [ torch.full((1, 1, row[0].shape[2], row[0].shape[3]), fill_value=m) for m in target_position ] else: # In-context examples row_masks = [ torch.full((1, 1, row[0].shape[2], row[0].shape[3]), fill_value=0) for _ in target_position ] mask.append(row_masks) return mask def preprocess_image_upsampling( self, input_images: List[List[Image.Image]], height: int, width: int, ) -> Tuple[List[List[Image.Image]], List[List[List[int]]]]: """Process images for the upsampling stage in the VisualCloze pipeline. Args: input_images: Input image to process height: Target height width: Target width Returns: Tuple of processed image and its size """ image = self.resize(input_images[0][0], height, width) image = self.pil_to_numpy(image) # to np image = self.numpy_to_pt(image) # to pt image = self.normalize(image) input_images[0][0] = image image_sizes = [[[height, width]]] return input_images, image_sizes def preprocess_mask_upsampling(self, input_images: List[List[Image.Image]]) -> List[List[torch.Tensor]]: return [[torch.ones((1, 1, input_images[0][0].shape[2], input_images[0][0].shape[3]))]] def get_layout_prompt(self, size: Tuple[int, int]) -> str: layout_instruction = ( f"A grid layout with {size[0]} rows and {size[1]} columns, displaying {size[0] * size[1]} images arranged side by side.", ) return layout_instruction def preprocess( self, task_prompt: Union[str, List[str]], content_prompt: Union[str, List[str]], input_images: Optional[List[List[List[Optional[str]]]]] = None, height: Optional[int] = None, width: Optional[int] = None, upsampling: bool = False, vae_scale_factor: int = 16, ) -> Dict: """Process visual cloze inputs. Args: task_prompt: Task description(s) content_prompt: Content description(s) input_images: List of images or None for the target images height: Optional target height for upsampling stage width: Optional target width for upsampling stage upsampling: Whether this is in the upsampling processing stage Returns: Dictionary containing processed images, masks, prompts and metadata """ if isinstance(task_prompt, str): task_prompt = [task_prompt] content_prompt = [content_prompt] input_images = [input_images] output = { "init_image": [], "mask": [], "task_prompt": task_prompt if not upsampling else [None for _ in range(len(task_prompt))], "content_prompt": content_prompt, "layout_prompt": [], "target_position": [], "image_size": [], } for i in range(len(task_prompt)): if upsampling: layout_prompt = None else: layout_prompt = self.get_layout_prompt((len(input_images[i]), len(input_images[i][0]))) if upsampling: cur_processed_images, cur_image_size = self.preprocess_image_upsampling( input_images[i], height=height, width=width ) cur_mask = self.preprocess_mask_upsampling(cur_processed_images) else: cur_processed_images, cur_image_size, cur_target_position = self.preprocess_image( input_images[i], vae_scale_factor=vae_scale_factor ) cur_mask = self.preprocess_mask(cur_processed_images, cur_target_position) output["target_position"].append(cur_target_position) output["image_size"].append(cur_image_size) output["init_image"].append(cur_processed_images) output["mask"].append(cur_mask) output["layout_prompt"].append(layout_prompt) return output