Spaces:
Runtime error
Runtime error
# Copyright 2025 The HuggingFace Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from PIL import Image | |
from transformers import AutoTokenizer, T5EncoderModel | |
from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanVACEPipeline, WanVACETransformer3DModel | |
from diffusers.utils.testing_utils import enable_full_determinism | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class WanVACEPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = WanVACEPipeline | |
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"return_dict", | |
"callback_on_step_end", | |
"callback_on_step_end_tensor_inputs", | |
] | |
) | |
test_xformers_attention = False | |
supports_dduf = False | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
vae = AutoencoderKLWan( | |
base_dim=3, | |
z_dim=16, | |
dim_mult=[1, 1, 1, 1], | |
num_res_blocks=1, | |
temperal_downsample=[False, True, True], | |
) | |
torch.manual_seed(0) | |
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0) | |
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
transformer = WanVACETransformer3DModel( | |
patch_size=(1, 2, 2), | |
num_attention_heads=2, | |
attention_head_dim=12, | |
in_channels=16, | |
out_channels=16, | |
text_dim=32, | |
freq_dim=256, | |
ffn_dim=32, | |
num_layers=3, | |
cross_attn_norm=True, | |
qk_norm="rms_norm_across_heads", | |
rope_max_seq_len=32, | |
vace_layers=[0, 2], | |
vace_in_channels=96, | |
) | |
components = { | |
"transformer": transformer, | |
"vae": vae, | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
num_frames = 17 | |
height = 16 | |
width = 16 | |
video = [Image.new("RGB", (height, width))] * num_frames | |
mask = [Image.new("L", (height, width), 0)] * num_frames | |
inputs = { | |
"video": video, | |
"mask": mask, | |
"prompt": "dance monkey", | |
"negative_prompt": "negative", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"height": 16, | |
"width": 16, | |
"num_frames": num_frames, | |
"max_sequence_length": 16, | |
"output_type": "pt", | |
} | |
return inputs | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
video = pipe(**inputs).frames[0] | |
self.assertEqual(video.shape, (17, 3, 16, 16)) | |
# fmt: off | |
expected_slice = [0.4523, 0.45198, 0.44872, 0.45326, 0.45211, 0.45258, 0.45344, 0.453, 0.52431, 0.52572, 0.50701, 0.5118, 0.53717, 0.53093, 0.50557, 0.51402] | |
# fmt: on | |
video_slice = video.flatten() | |
video_slice = torch.cat([video_slice[:8], video_slice[-8:]]) | |
video_slice = [round(x, 5) for x in video_slice.tolist()] | |
self.assertTrue(np.allclose(video_slice, expected_slice, atol=1e-3)) | |
def test_inference_with_single_reference_image(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["reference_images"] = Image.new("RGB", (16, 16)) | |
video = pipe(**inputs).frames[0] | |
self.assertEqual(video.shape, (17, 3, 16, 16)) | |
# fmt: off | |
expected_slice = [0.45247, 0.45214, 0.44874, 0.45314, 0.45171, 0.45299, 0.45428, 0.45317, 0.51378, 0.52658, 0.53361, 0.52303, 0.46204, 0.50435, 0.52555, 0.51342] | |
# fmt: on | |
video_slice = video.flatten() | |
video_slice = torch.cat([video_slice[:8], video_slice[-8:]]) | |
video_slice = [round(x, 5) for x in video_slice.tolist()] | |
self.assertTrue(np.allclose(video_slice, expected_slice, atol=1e-3)) | |
def test_inference_with_multiple_reference_image(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["reference_images"] = [[Image.new("RGB", (16, 16))] * 2] | |
video = pipe(**inputs).frames[0] | |
self.assertEqual(video.shape, (17, 3, 16, 16)) | |
# fmt: off | |
expected_slice = [0.45321, 0.45221, 0.44818, 0.45375, 0.45268, 0.4519, 0.45271, 0.45253, 0.51244, 0.52223, 0.51253, 0.51321, 0.50743, 0.51177, 0.51626, 0.50983] | |
# fmt: on | |
video_slice = video.flatten() | |
video_slice = torch.cat([video_slice[:8], video_slice[-8:]]) | |
video_slice = [round(x, 5) for x in video_slice.tolist()] | |
self.assertTrue(np.allclose(video_slice, expected_slice, atol=1e-3)) | |
def test_attention_slicing_forward_pass(self): | |
pass | |
def test_encode_prompt_works_in_isolation(self): | |
pass | |
def test_inference_batch_consistent(self): | |
pass | |
def test_inference_batch_single_identical(self): | |
return super().test_inference_batch_single_identical() | |