Spaces:
Runtime error
Runtime error
# Copyright 2024 The HuggingFace Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, T5EncoderModel | |
from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanPipeline, WanTransformer3DModel | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
require_torch_accelerator, | |
slow, | |
) | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import ( | |
PipelineTesterMixin, | |
) | |
enable_full_determinism() | |
class WanPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = WanPipeline | |
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"latents", | |
"return_dict", | |
"callback_on_step_end", | |
"callback_on_step_end_tensor_inputs", | |
] | |
) | |
test_xformers_attention = False | |
supports_dduf = False | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
vae = AutoencoderKLWan( | |
base_dim=3, | |
z_dim=16, | |
dim_mult=[1, 1, 1, 1], | |
num_res_blocks=1, | |
temperal_downsample=[False, True, True], | |
) | |
torch.manual_seed(0) | |
# TODO: impl FlowDPMSolverMultistepScheduler | |
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0) | |
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
transformer = WanTransformer3DModel( | |
patch_size=(1, 2, 2), | |
num_attention_heads=2, | |
attention_head_dim=12, | |
in_channels=16, | |
out_channels=16, | |
text_dim=32, | |
freq_dim=256, | |
ffn_dim=32, | |
num_layers=2, | |
cross_attn_norm=True, | |
qk_norm="rms_norm_across_heads", | |
rope_max_seq_len=32, | |
) | |
components = { | |
"transformer": transformer, | |
"vae": vae, | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "dance monkey", | |
"negative_prompt": "negative", # TODO | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"height": 16, | |
"width": 16, | |
"num_frames": 9, | |
"max_sequence_length": 16, | |
"output_type": "pt", | |
} | |
return inputs | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
video = pipe(**inputs).frames | |
generated_video = video[0] | |
self.assertEqual(generated_video.shape, (9, 3, 16, 16)) | |
expected_video = torch.randn(9, 3, 16, 16) | |
max_diff = np.abs(generated_video - expected_video).max() | |
self.assertLessEqual(max_diff, 1e10) | |
def test_attention_slicing_forward_pass(self): | |
pass | |
class WanPipelineIntegrationTests(unittest.TestCase): | |
prompt = "A painting of a squirrel eating a burger." | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_Wanx(self): | |
pass | |